
OO Programming

C# Programming

Gloscol 2023

C# Programming 1

In this chapter we will learn ...

What is Object Oriented Programming

The four Pillars of OO Programming which are

Encapsulation

Abstraction

Inheritance

Polymorphism

Gloscol 2023

C# Programming 2

Agenda

Review Last Topic

Introducing Object Oriented

Programming

The Four Pillars of OO

Understanding the four pillars -

101

Gloscol 2023

C# Programming 3

Review

What is ...

an object?

a class>

What's the difference?

Gloscol 2023

C# Programming 4

Introducing Object Oriented Design and Programming

How do we manage the complexity of a complex system?

(an) Answer

We break it down into smaller pieces

Each piece should be easier to understand

Each of the pieces can then be linked together and made to work with each other?

Each piece can be verified/tested

Gloscol 2023

C# Programming 5

Decomposing Complexity

To break a complex system into smaller pieces we could write

Modules containing monolithic code - ???

Modules containing functions - Functional approach

Classes defining data and methods - OO Approach

Gloscol 2023

C# Programming 6

OO Analysis and Design

Traditional Approach

Produce UML Models of domain

Class Diagrams

State Transition Diagrams

Object Sequence Diagrams

Usually done before development commences

Agile Approach

No upfront design (No actual value to shippable product)

Design emerges over iteration (UML may be used to document design)

Gloscol 2023

C# Programming 7

Modeling a problem with
class diagrams

Identify the "nouns" in a problem statement

Nouns are modeled as classes

Determine relationships between classes

Identify commonality

Can you make generalizations

Identify specializations

Use inheritance

Gloscol 2023

C# Programming 8

Associations

Define object relationships

Three types

Association - "Knows of"

Aggregation - "Part of"

Composition - "Part of"

Gloscol 2023

C# Programming 9

Inheritance

Generalizations

Define Commonality across types

Specializations

Extend a base type
Add new behavior

Override existing behavior

Gloscol 2023

C# Programming 10

Aggregation

Association

Applies to types that are

Related

Utilize the services of

Aggregation

Gloscol 2023

C# Programming 11

Interface

Defines capability without defining implementation

A document could be:

SpellCheckable and

Printable at the same time

That means the document has the capability and therefore the ability to be

Printed and

Spell Checked

Interfaces define the methods and properties that a document must implement for it to

have both capabilities

Gloscol 2023

C# Programming 12

Principles of OO

The Four Pillars

Abstraction - Hide complexity of implementation

Encapsulation - Hide and protect data

Inheritance - Identify commonality/specialization and promote re-use

Polymorphism - Write code that works with objects based on capability

Gloscol 2023

C# Programming 13

Creating a Good OO Design

Ideally a good OO design should produce an object model that is

Loosely Coupled

Easy to Test

Flexible enough to change

Able to fundamentally switch implementation

Design is said to be SOLID

Gloscol 2023

C# Programming 14

Encapsulation

Gloscol 2023

C# Programming 15

Encapsulation

Purpose

Hide a type's information from direct manipulation

Allow only controlled access to a type's data

Benefit

Data inside objects changes in controlled and predictable ways

Data changes can be validated

Data changes can be easily detected and intercepted

Gloscol 2023

C# Programming 16

Information Hiding

Consider the following

class Car {
 public int speed;
 private string make;
}

Car myCar = new Car();
myCar.speed = 50; // Accessible because it is public
myCar.make = "Ford"; // Not Accessible because it is private
... ?

Gloscol 2023

C# Programming 17

Controlling Access to Data

Using Car as an example

class Car {
 public int speed;
 private string make;
}

We could make Car go faster than any car has ever gone!

Car myCar = new Car();
myCar.speed = 50000; // 50000 MPH is faster than the fastest car ever

Gloscol 2023

C# Programming 18

PROBLEM

Allowing Direct Access to a types data creates problems

We can't control how that data is manipulated

We can't validate inputs

We can't ensure calculations are performed correctly

We can't ensure processes are followed

It's a free for all!

Gloscol 2023

C# Programming 19

Encapsulation

Encapsulation is a form of information hiding

Make data private inside a type

Provide functions/properties to allow controlled access to the data

Gloscol 2023

C# Programming 20

Reading private data

Private data can be retrieved using a public getter function

class Car {
 private int speed;
 public int GetSpeed(){
 return speed;
 }
}

Gloscol 2023

C# Programming 21

Modifying private data

Public Setter functions can control the change of hidden data

class Car {
 public const int MAX_SPEED = 120;
 private int speed;
 ...
 public int SetSpeed(int value){
 if (value <= MAX_SPEED) {
 speed = value;
 }
 }
}

Gloscol 2023

C# Programming 22

Properties

C# allows for the use of properties

Appear to be simple fields

Implemented using Getter/Setter functions

Use private backing fields to store data

Properties are an alternative to getter/setter functions

Gloscol 2023

C# Programming 23

Property - Example

Defining a Read Property

class Car {
 public const int MAX_SPEED = 120;
 private int speed;
 public int Speed{
 get {
 return speed;
 }
 }
}

Gloscol 2023

C# Programming 24

Property - Example

Defining a Write Property

class Car {
 public const int MAX_SPEED = 120;
 private int speed;
 public int Speed{
 set {
 if (value <= MAX_SPEED) {
 speed = value;
 }
 }
 }
}

Note the value parameter isn't formally defined

value is an implicit parameter of a setter

Gloscol 2023

C# Programming 25

Property Expressions

Properties can be condensed

class Car {
 public const int MAX_SPEED = 120;
 private int speed;
 public int Speed {
 get => speed;
 set => if (value < MAX_SPEED) speed = value;
 }
}

Gloscol 2023

C# Programming 26

Varying Accessibility

Read/Write accessors can have different accessibility settings

getter is public

setter is private

class Car {
 public const int MAX_SPEED = 120;
 private int speed;
 public int Speed {
 get => speed;
 private set => if (value < MAX_SPEED) speed = value;
 }
}

Gloscol 2023

C# Programming 27

Inheritance

Gloscol 2023

C# Programming 28

Question

What are the major benefits of
Inheritance?

Gloscol 2023

C# Programming 29

Inheritance

How do you understand it?

A child inherits some features of its parents

A beneficiary inherits some assets from an estate

A type inherits some features of its parent type

In each case

"Features" are being inherited from parent to child

Gloscol 2023

C# Programming 30

Inheriting Features

The ability to inherit features is useful to programmers

We could define general features in a parent type (Generalization)

Inherit the general features into one or more child types

Add extra features specific to each child (Specialization)

Benefit

We are writing less code

We are reusing code

Gloscol 2023

C# Programming 31

Example - Shapes have an Origin, Size, Area

What do they have in common?

Gloscol 2023

C# Programming 32

Creating a Generalization - Shape
Gloscol 2023

C# Programming 33

C# Inheritance

Syntax

C# supports single inheritance
class <Derived Type Name> : <Base Type Name> {

}

Gloscol 2023

C# Programming 34

Implementing Inheritance

Here Rectangle inherits from Shape with a final definition of

X, Y

Width, Height

class Shape { // Base Class
 public int X {get;set;}
 public int Y {get;set;}
}

class Rectangle: Shape { // Derived Class
 public int Width {get;set;}
 public int Height {get;set;}
}

Gloscol 2023

C# Programming 35

Inheritance and constructors

Here we have a Shape with a constructor

class Shape { // Base Class
 public int X {get;init;}
 public int Y {get;init;}
 public Shape(int x, int y){
 X = x;
 Y = y;
 }
}

Following code initializes an instance

Shape myShape = new Shape(10, 5);

Gloscol 2023

C# Programming 36

Potential Problem

What happens when an inheriting type inherits from Shape?

Constructors aren't inherited

class Square: Shape
{

}

Answer

It's a problem!!!!!

Gloscol 2023

C# Programming 37

Single Inheritance

To create a derived type

Its base type has to be constructed first

A base type constructor must be satisfied

Gloscol 2023

C# Programming 38

Calling the Base Constructor from the Derived class

Here we

Add a constructor to Square

Call the base constructor directly using :base (x, y) to initialize the base

Initialize Width for Square constructor

class Square: Shape
{
 public Square(int x, int y, int width): base(x, y) {
 Width = width;
 }
}

Gloscol 2023

C# Programming 39

Providing a Blank Constructor

If the base class has a parameter-less constructor

Parameter-less constructor will be used automatically

Explicit Constructor chaining is unnecessary

class Shape {
 public Shape() {} // Parameterless Constructor Added
 public Shape(int x, int y){
 X = x;
 Y = y;
 }
}
class Square: Shape { // Square can construct Shape using parameterless constructor
}

Gloscol 2023

C# Programming 40

Extending Classes

Classes can be extended by adding new features to the derived class

class Shape { // Base Class
 public int X {get;set;}
 public int Y {get;set;}
}

Here Shape is extended by adding property Height

class Square: Shape { // Derived Class
 public int X {get;set;}
 public int Y {get;set;}
 public int Height {get;set;}
}

Gloscol 2023

C# Programming 41

Allowing base class features to be overridden

Derived classes can override methods/properties declared in base as

abstract - must override in derived class

virtual - can override or be inherited by derived class

abstract class Shape { // Base Class
 public int X {get;set;}
 public int Y {get;set;}
 public abstract int Area {get;}
 public abstract int Circumference {get;}
 public virtual Point Center => new Point(X, Y);
}

Gloscol 2023

C# Programming 42

Note
Remember if a class contains any method or property declared as abstract the class itself must be declared as abstract as in
abstract class Shape {

}
We can't create object instances of abstract classes.

Overriding base class features

We use override keyword to override properties/methods in base class

class Rectangle: Shape { // Derived Class
 public int Width {get;set;}
 public int Height {get;set;}
 public override int Area => Width * Height;
 public override int Circumference => Width * 2 + Height * 2;
}

X and Y properties are inherited from Shape

Virtual Center property is inherited but we could override this

Shape is extended by adding Width and Height properties

Concrete implementations for abstract Area and Circumference properties are added

Gloscol 2023

C# Programming 43

So ...

Inheritance allows us to

Inherit and re-use features in a base class

Extend features in a base class by adding new features to the derived class

Override abstract or virtual features of the base class

Allows us to vary the behavior of the same method across multiple derived
classes

Facilitates Polymorphism

Gloscol 2023

C# Programming 44

Polymorphism

Gloscol 2023

C# Programming 45

Polymorphism

Literally means Multiple Forms

Gloscol 2023

C# Programming 46

Let's image the following model

Gloscol 2023

C# Programming 47

Polymorphism Explained

class Car {
 public int Speed {get;protected set;}
 public virtual int MaxSpeed {get => 120}
 public virtual void Accelerate(int amount = 5) {
 Thread.Sleep(80 * amount);
 Speed += amount;
 }
}

Gloscol 2023

C# Programming 48

Creating a Car object

Car myCar = new Car();

Car reference points to Car object

Gloscol 2023

C# Programming 49

Extending Car

RacingCar is a kind of Car but it also has

Spoilers property

class RacingCar: Car {
 public int Spoilers {get;set;}
}

Gloscol 2023

C# Programming 50

Creating a RacingCar object

RacingCar myCar = new RacingCar();

RacingCar reference points to RacingCar object

Gloscol 2023

C# Programming 51

Reference Substitution

A base class reference variable can point to

Any derived object in inheritance hierarchy

That means we can do this

Car myCar = new RacingCar();

Gloscol 2023

C# Programming 52

Reference Substitution - Under the hood

Car myCar = new RacingCar();

Car reference points to RacingCar object

Gloscol 2023

C# Programming 53

Why is substitution useful?

We can write sub systems targeting the base class

e.g. A function expecting a base class parameter

Use method overriding in derived classes to vary behavior

Derived classes override certain methods/properties

Substitute base class for derived instances

Pass an instance of a derived class rather than the base class

Result is polymorphism

Gloscol 2023

C# Programming 54

Given

void AccelerateToMaxSpeed(Car item) {
 while(item.Speed < item.MaxSpeed) {
 item.Accelerate();
 }
}

Substitution allows us to pass to AccelerateToMaxSpeed a

Car reference or ..

Reference of any type inheriting from Car

AccelerateToMaxSpeed(new Car());
AccelerateToMaxSpeed(new RacingCar());

Gloscol 2023

C# Programming 55

So what's the big deal?

At the moment Car and RacingCar will both Accelerate the same way

Accelerate method is inherited from Car

But .. It's declared as virtual

virtual means it can be overridden

Gloscol 2023

C# Programming 56

Let's override Accelerate(..)

class Car {
 ...
 public virtual Accelerate(int amount = 5){
 Thread.Sleep(80 * amount);
 Speed += amount;
 }
}

Reducing the delay will make it appear to accelerate faster

class RacingCar: Car {
 ...
 public override Accelerate(int amount = 5){
 Thread.Sleep(40 * amount);
 Speed += amount;
 }
}

Gloscol 2023

C# Programming 57

Same Code - Different Object

Now let's Accelerate different Cars ...

AccelerateToMaxSpeed(new Car());
AccelerateToMaxSpeed(new RacingCar());

Result

RacingCar accelerates faster than Car

Substitution allows us to pass any kind of Car to AccelerateToMaxSpeed

override let's us modify the behavior of certain features

Gloscol 2023

C# Programming 58

Polymorphism

The ability to define multiple object forms that

Share a common set of behaviors

Implement their behaviors in their own way

Polymorphism helps us to

Increase the flexibility and reuse of the code we write

Decouple the code we write from dependence of data type

Gloscol 2023

C# Programming 59

Abstraction

Gloscol 2023

C# Programming 60

Discuss

What is Abstraction?

Gloscol 2023

C# Programming 61

Imagine a Duck

Why is a Duck like abstraction?

Gloscol 2023

C# Programming 62

Abstraction

Abstraction is about hiding complexity by ...

Hiding the details of implementation

Simplifying the external surface
Providing only those methods and properties absolutely needed

Abstraction is about ease of change

We should be able to change how the type is implemented

We shouldn't need to change how we use it

Gloscol 2023

C# Programming 63

What does it mean to be a ...

Car

What are the bare essentials that define Car in our domain?

Speed, RPM, FuelLevel, VID ... ?

Accelerate(), Brake(), Start(), Stop() ... ?

Gloscol 2023

C# Programming 64

The Job

Condense the definition down to bare essentials

Hide the complexity

How do we generate power? ... Hide it

How do we store fuel? ... Hide it

How do we drive the wheels? ... Not your problem

We need to define a simple interface that

Allows the user of the type to operate the Car regardless of its implementation

Gloscol 2023

C# Programming 65

Why might this implementation be a problem?

class Car {
 public int Speed {get;private set;}
 public Accelerate(int amount) {
 int requiredSpeed = Speed + amount;
 while(Speed < requiredSpeed) {
 IncreaseFuelFlow(5);
 Thread.Sleep(500);
 }
 }
 public void IncreaseFuelFlow(int volumeIncrease) {
 // Increase Fuel Flow
 // Leads to Speed increasing ... trust me :)
 }
}

Gloscol 2023

C# Programming 66

Abstracting Car

We can change the speed of the Car by calling public methods

Accelerate() or

IncreaseFuelFlow()

But ...

IncreaseFuelFlow() assumes a fossil fuel based Car

What happens if we want to change the implementation to be electric?

So create an abstract public interface

Gloscol 2023

C# Programming 67

Hiding Implementation

If we hide implementation we can change it later

class Car {
 public int Speed {get;private set;}
 public Accelerate(int amount) {
 int requiredSpeed = Speed + amount;
 while(Speed < requiredSpeed) {
 IncreaseFuelFlow(5);
 Thread.Sleep(500);
 }
 }
 private void IncreaseFuelFlow(int volumeIncrease) {
 ...
 }
}

Gloscol 2023

C# Programming 68

To change implementation for an Electric Car

Maintain the public interface

Change the private implementation

class Car {
 public int Speed {get;private set;}
 public Accelerate(int amount) {
 ...
 while(Speed < requiredSpeed) {
 IncreaseElectricCurrent(5);
 ...
 }
 }
 private void IncreaseElectricCurrent(int current) {}
}

Gloscol 2023

C# Programming 69

So ...

The public face of our types should be simple (an abstraction) but ...

Under the hood they are implementing complexity via
Private function

Interactions with other types

We should be able to change the implementation of our type without

Changing the public interface

Changing how it is used within our application

Unit Test cases should still hold true

Gloscol 2023

C# Programming 70

Abstract Data Types

Sometimes an abstraction is

Too abstract to exist as an object in its own right
Useful only as a template for defining other types

C# Allows for the creation of abstract type using abstract keyword

Defines a type that can't be used to create objects. Does support inheritance

abstract class Car {
 public int Speed {get;private set;}
}
Car myCar = new Car(); // COMPILE ERROR!!!

Gloscol 2023

C# Programming 71

Abstract Classes

Abstract classes allow abstract methods and properties

Requires the inheriting class to implement

Code below requires any inheriting type to fully implement Accelerate(..)

Note Accelerate has no code block defined { .. }

abstract class Car {
 public int Speed{get;private set;}
 public abstract void Accelerate(int amount);
}

Gloscol 2023

C# Programming 72

In this chapter we learned ...

What is Object Oriented Programming

The four Pillars of OO Programming which are

Encapsulation

Abstraction

Inheritance

Polymorphism

Gloscol 2023

C# Programming 73

