
Control Flow

C# Programming

Gloscol 2023

C# Programming 1

In this chapter we will learn ...

Controlling execution flow

if, for, foreach, switch and while statements

How to handle exceptions

Gloscol 2023

C# Programming 2

Question

Name some control flow
statements

Gloscol 2023

C# Programming 3

What happens next?

Every programming language has a way to

Make decisions about which code to execute

And NOT execute

Keep executing the same code until complete/finished

Process the contents of an array or list

Just run some code x number of times

Control what happens after an error occurs

Gloscol 2023

C# Programming 4

Control Flow Statements

Main Control Flow statements in C# are:

Gloscol 2023

Statement Purpose

if, else if, else Controls what executes next

while, do while Executes until a set state is reached

foreach Processes the contents of a collection

for Executes code a set number of times

try, catch Handles exceptions

C# Programming 5

Gloscol 2023

C# Programming 6

if statement

Purpose

To selectively determine which line(s) of code to execute next

Basic Syntax

if (<boolean expression(s) evaluates to true>)
{
 // Code to execute
}

Code inside if may or may not execute

Depending on current state

Gloscol 2023

C# Programming 7

Simple if - example

int age = 21;
decimal salary = 60000;
decimal bonus = 0;

if (age >= 21 && salary < 100000) // Age not relevant! Convenient example :)
{
 bonus = salary * 0.05m;
}

Console.WriteLine($"Bonus is {bonus:c}")

Try expressing the rule in words ...

Gloscol 2023

C# Programming 8

What happens if the rule fails?

The else clause

When the if clause evaluates to false the else provides a default action

...

if (age >= 21 && salary < 100000) {
 bonus = salary * 0.05m;
}
else {
 bonus = salary * 0.02m;
}
Console.WriteLine($"Bonus is {bonus:c}")

Only one else clause is allowed and must be placed at the end

Gloscol 2023

C# Programming 9

But what if bonus rules were more complex?

Provide multiple alternative if statements using else if

if (age >= 21 && salary < 100000) {
 bonus = salary * 0.05m;
}
else if (age < 21 and salary < 100000) {
 bonus = 0.08m;
}
else {
 bonus = salary * 0.02m;
}

Multiple else if clauses are allowed

Gloscol 2023

C# Programming 10

Single statement if

if can be written without braces { } - but there's a problem ...

int age = 21;
decimal salary = 60000;
decimal bonus;

if (age >= 21 && salary < 100000)
 bonus = salary * 0.05m;
 Console.WriteLine($"Bonus is {bonus:c}"); // ERROR! bonus is uninitialized

What's the problem?

Gloscol 2023

C# Programming 11

if statements without braces- GOTCHA

In a single statement if

Only the first statement is guarded by the if clause

Subsequent statements sit outside of the if logic

So ...

Console.WriteLine line will execute regardless of the values of age and salary

if (age >= 21 && salary < 100000)
 bonus = salary * 0.05m;
 Console.WriteLine($"Bonus is {bonus:c}"); // ERROR! bonus is uninitialized

Gloscol 2023

C# Programming 12

Ternary Operator

Acts as a single line if statement

Facilitates selectively initializing variables

Syntax

<variable> = <boolean expression> ? <value to assign if true> : <value to assign of false>

Made up of

Boolean expression

? - Value/Variable to assign if to variable if expression is true

: - Value/Variable to assign if to variable if expression is false

Gloscol 2023

C# Programming 13

Ternary Operator - Example

Instead of

if (age >= 21 && salary < 100000)
 bonus = salary * 0.05m;
else
 bonus = salary * 0.02m;

We could use a ternary operator and write

decimal bonus = (age >= 21 && salary < 100000) ? salary * 0.05m : salary * 0.02m;

Gloscol 2023

C# Programming 14

for loop

Purpose

To execute code a defined number of times

Basic Syntax

for (<one or more loop counter variables>; <loop exit clause(s)>; <loop counter modifier>)
{
 // Code to execute
}

Gloscol 2023

C# Programming 15

for loop statement - Example

for (int count = 0; count < 20; count++)
{
 Console.WriteLine(count);
}

Gloscol 2023

C# Programming 16

for loop - Early Exit

break can be used to exit from the loop

for (int count = 0; count < 20; count++)
{
 if (count == 3) break;
 Console.WriteLine(count);
}

0
1

2

Gloscol 2023

C# Programming 17

for loop - Next Iteration

continue moves immediately to the next iteration

Also works with while

for (int count = 0; count < 20; count++) {
 if (count == 3) continue;
 Console.WriteLine(count);
}

0
1

2
4

Gloscol 2023

C# Programming 18

Processing Collections

To process every element in an array we could use

for loop

string[] names = {"Fred", "Mina", "Amy", "Tam", "Dhami"};

for (int index = 0; index < names.Length; index++)
{
 string name = names[index]; // Index into array using the loop counter variable
 Console.WriteLine($"Hello {name}.");
}

for loop allows read/write access to array elements

Gloscol 2023

C# Programming 19

foreach loop

Purpose

To access the contents of an array or list

Can process any type implementing IEnumerable

OR any type that implements GetEnumerator() public function

Basic Syntax

foreach (<type> <variable name> in <IEnumerable object>)
{
 // Code to execute
}

Gloscol 2023

C# Programming 20

Note
GetEnumerator() must return a type that implements Current property and MoveNext()

foreach loop statement - Example

Let's say "Hello" to every friend in the names array

An array implements IEnumerable

string[] names = {"Fred", "Mina", "Amy", "Tam", "Dhami"};

foreach (string name in names)
{
 Console.WriteLine($"Hello {name}.");
 Console.WriteLine("I hope you have a nice day.");
}

Gloscol 2023

C# Programming 21

foreach - Gotcha

foreach loops are by default readonly

Below code will give an error

string[] names = {"Fred", "Mina", "Amy", "Tam", "Dhami"};

foreach (string name in names)
{
 Console.WriteLine($"Hello {name}.");
 name += "s"; // Compile Error! Can't change foreach loop variable
}

Gloscol 2023

C# Programming 22

foreach writable - Solution - C# 7.3

Use a foreach by reference
Arrays must be cast to Span<T>

Declare loop variable as ref

Span<string> names = new string[] { "Fred", "Mina", "Amy", "Tam", "Dhami" };
foreach (ref string name in names)
{
 Console.WriteLine($"Hello {name}.");
 name += "s";
}

Gloscol 2023

C# Programming 23

switch statement

Purpose

To evaluate/match a single/multiple variables for specific processing

Basic Syntax - Simple

switch (<variable to evalue>) {
 case <value to match>: // One or more case statements allowed
 // Code to execute
 break; // To ensure exit from the switch
 default:
 // Code to execute if match not found
 break;

}

Gloscol 2023

C# Programming 24

switch (Constant Pattern) - Example

Below weather conditions is evaluated against a constant/fixed pattern

WeatherConditions conditions = WeatherConditions.Raining;
switch(conditions) {
 case WeatherContitions.Raining:
 Console.WriteLine("It's raining!");
 break;
 case WeatherConditions.Sunny:
 Console.WriteLine("It's a beautiful day!");
 break;
 default:
 Console.WriteLine("What's the weather like?");
 break;
}

Gloscol 2023

C# Programming 25

switch - with fall-through

If you don't use a break statement execution falls through to case below

Here Raining and Sleeting are handled the same way

WeatherConditions conditions = WeatherConditions.Raining;
switch(conditions) {
 case WeatherContitions.Raining:
 case WeatherContitions.Sleeting:
 Console.WriteLine("It's a miserable day!");
 break;
 case WeatherConditions.Sunny:
 Console.WriteLine("It's a beautiful day!");
 break;
}

Gloscol 2023

C# Programming 26

switch - Relational pattern

Allows use of standard relational operators

byte age = 17;
switch(age) {
 case < 16:
 Console.WriteLine("Child");
 break;
 case < 18:
 Console.WriteLine("Young adult");
 break;
 case >= 18 and < 65:
 Console.WriteLine("Adult");
 break;
}

Gloscol 2023

C# Programming 27

Pattern Matching with type and when clause

Here a nullable byte is cast to a byte if pattern matches

byte? enteredAge = null;
switch (enteredAge)
{
 case byte age when age >= 18:
 Console.WriteLine("Adult");
 break;
 default:
 Console.WriteLine("Age Not Supplied");
 break;
}

No match is found because enteredAge is null

Gloscol 2023

C# Programming 28

Using switch as a function guard

switch statements can be used to guard execution of critical code

void DoSomething(int a, int b) {

 switch ((a, b)) {
 case (>5, >10) when b % a == 0:
 Console.WriteLine("All is well!");
 break;
 default:
 Console.WriteLine("Ooops");
 break;
 }
}

Gloscol 2023

C# Programming 29

switch expressions

A switch can be expressed as a lambda expression

Expression

string HowsTheweather(WeatherContitions condition) => condition switch {

 WeatherContitions.Raining => "It's raining!";
 WeatherConditions.Sunny => "It's a beautiful day!";
 _ => "What's the weather like?";

}

Gloscol 2023

C# Programming 30

while statement

Purpose

To repeatedly execute a block of code while a boolean test evaluates to true

Basic Syntax

while (<boolean expression(s) evaluates to true>)
{
 // Code to execute
}

Note: The code inside the while may never execute!

if the boolean expression evaluates to false at the start

Gloscol 2023

C# Programming 31

while statement - Example

int count = 0;
while(count < 20)
{
 Console.WriteLine(count);
 count++;
}

while loop keeps executing

Until count is equal to 20

Incrementing count leads to loop clause eventually evaluating to false

Gloscol 2023

C# Programming 32

while statement - Early Termination

Use break to exit loop early

int count = 0;
while(count < 20) {
 if (count == 15) break;
 Console.WriteLine(count);
 count++;
}

Gloscol 2023

C# Programming 33

Ensuring Loop code executes once

while loops may never execute code within

Loop clause may prevent entry into code block

do while inverts the loop

int count = 20;
do
{
 Console.WriteLine(count);
 count++;
}while(count < 20);

What will happen in above code?

Gloscol 2023

C# Programming 34

Exceptions are cool

An exception is a report of an unhandled exceptional state

When an exception occurs we have some choices

Should code execution just continue

Should we at least check what the error is and ...

see if there is something we can do about it

report it - to the user or to a log

should we ignore it?

Gloscol 2023

C# Programming 35

Exceptions in C#

Are deliberately fatal to the execution of the app
If you don't handle am exception your app/transaction will fail

Are hierarchical

They are passed between functions from child to parent

Then recursively up through the call stack

Gloscol 2023

C# Programming 36

Exceptions are generated at the point of error

Here a divide by zero occurs at the red star

Gloscol 2023

C# Programming 37

Exception Propagation

Unless handled an exception propagates back through the call stack

Gloscol 2023

C# Programming 38

Handling an Exception

If an exception reaches the top of the call stack

Execution of the application code terminates

Control passes to apps the execution engine
Could be the OS or a host process

Catching exceptions stops exception propagation

Exception can be dealt with

After exception catching normal execution flow resumes

Gloscol 2023

C# Programming 39

Catching Exceptions

Simple try catch block

try {
 <do something that might fail>
}
catch (<Exception>) {
 <code to handle the failure>
}

Gloscol 2023

C# Programming 40

try catch - Example

void DoSomething(int x) {
 try {
 var result = 10 / x;
 }
 catch (Exception){
 Console.WriteLine("An error has occurred!")
 }
 Console.WriteLine("Finished executing DoSomething()")
}

> DoSomething(0);
An error has occurred!

Finished Executing DoSomething

Gloscol 2023

C# Programming 41

In this chapter we learned ...

Controlling execution flow

if, for, foreach, switch and while statements

How to handle exceptions

Gloscol 2023

C# Programming 42

