Gloscol 2023

Control Flow

C# Programming

C# Programming

Gloscol 2023

In this chapter we will learn ...

o Controlling execution flow
e if for, foreach, switch and while statements

e How to handle exceptions

C# Programming

Gloscol 2023

Question

Name some control flow
statements

C# Programming

Gloscol 2023

What happens next?

Every programming language has a way to

e Make decisions about which code to execute
o And NOT execute

o Keep executing the same code until complete/finished 5

e Process the contents of an array or list v.|,r

e Just run some code x number of times C

Control what happens after an error occurs

C# Programming @

Gloscol 2023

Control Flow Statements

Main Control Flow statements in C# are:

et pupose

while, do while = Executes until a set state is reached

for Executes code a set number of times

C# Programming

Gloscol 2023

C# Programming

Gloscol 2023

If statement

Purpose

o To selectively determine which line(s) of code to execute next

Basic Syntax

if (<boolean expression(s) evaluates to true>)

{
}

// Code to execute

e Code inside if may or may not execute
o Depending on current state

C# Programming

Gloscol 2023

Simple if - example

int age = 21;
decimal salary = 60000;
decimal bonus = 0;

if (age >= 21 && salary < 100000) // Age not relevant! Convenient example :)
{

}

bonus = salary * 0.05m;

Console.WriteLine($"Bonus is {bonus:c}")

Try expressing the rule in words ...

C# Programming

Gloscol 2023

What happens if the rule fails?

The else clause

e When the if clause evaluates to false the else provides a default action

if (age >= 21 && salary < 100000) {
bonus = salary * 0.05m;

s
else {

bonus = salary * 0.02m;
I3

Console.WriteLine($"Bonus is {bonus:c}")

e Only one else clause is allowed and must be placed at the end

C# Programming

Gloscol 2023

But what if bonus rules were more complex?

Provide multiple alternative if statements using else if

if (age >= 21 && salary < 100000) {
bonus = salary % 0.05m;
¥

else if (age < 21 and salary < 100000) {
bonus = 0.08m;

+
else {

bonus = salary % 0.02m;
s

o Multiple else if clauses are allowed

C# Programming

10

Gloscol 2023

Single statement if

if can be written without braces { } - but there's a problem ...

int age = 21;
decimal salary = 60000;
decimal bonus;

if (age >= 21 && salary < 100000)
bonus = salary * 0.05m;
Console.WriteLine($"Bonus is {bonus:c}"); // ERROR! bonus is uninitialized

What's the problem?

C# Programming

11

Gloscol 2023

If statements without braces- GOTCHA

In a single statement if

e Only the first statement is guarded by the if clause

e Subsequent statements sit outside of the if logic

So...

e Console WriteLine line will execute regardless of the values of age and salary

if (age >= 21 && salary < 100000)
bonus = salary * 0.05m;
Console.WriteLine($"Bonus is {bonus:c}"); // ERROR! bonus is uninitialized

C# Programming

12

Ternary Operator

Acts as a single line if statement

e Facilitates selectively initializing variables

Syntax

<variable> = <boolean expression> ? <value to assign if true> : <value to assign of false>

Made up of

e Boolean expression
e ? - Value/Variable to assign if to variable if expression is true

o : - Value/Variable to assign if to variable if expression is false

13

Gloscol 2023

Ternary Operator - Example

Instead of

if (age >= 21 && salary < 100000)
bonus = salary * 0.05m;

else
bonus = salary % 0.02m;

We could use a ternary operator and write

decimal bonus = (age >= 21 && salary < 100000) ? salary x 0.05m :

C# Programming

salary x 0.02m;

14

Gloscol 2023

for loop

Purpose

e To execute code a defined number of times

Basic Syntax

for (<one or more loop counter variables>; <loop exit clause(s)>; <loop counter modifier>)

{
}

// Code to execute

C# Programming

15

Gloscol 2023

for loop statement - Example

for (int count = 0; count < 20; count++)

{
}

Console.WritelLine(count);

C# Programming

16

Gloscol 2023

for loop - Early Exit

break can be used to exit from the loop

for (int count = 0; count < 20; count++)

{

if (count == 3) break;
Console.WriteLine(count);
}
0
1
2

C# Programming

17

Gloscol 2023

for loop - Next Iteration

continue moves immediately to the next iteration

e Also works with while

for (int count = @; count < 20; count++) {
if (count == 3) continue;
Console.WritelLine(count);

A~ DN - O

C# Programming

18

Gloscol 2023

Processing Collections

To process every element in an array we could use

o forloop

String[] names {IIFredll’ "Mina“, “Amy“, “Tam“, “Dhami“};

for (int index = 0; index < names.lLength; index++)

{

string name = names[index]; // Index into array using the loop counter variable
Console.WriteLine($"Hello {name}.");

o for loop allows read/write access to array elements

C# Programming

19

foreach loop

Purpose

e To access the contents of an array or list
e Can process any type implementing IEnumerable

e OR any type that implements GetEnumerator() public function

Basic Syntax

foreach (<type> <variable name> in <IEnumerable object>)

{
}

// Code to execute

20

Note
GetEnumerator() must return a type that implements Current property and MoveNext()

Gloscol 2023

foreach loop statement - Example

Let's say "Hello" to every friend in the names array

e An array implements IEnumerable

string[] names = {"Fred", "Mina", "Amy", "Tam", "Dhami"};

foreach (string name in names)

{

Console.WriteLine($"Hello {namel}.");
Console.WriteLine("I hope you have a nice day.");

C# Programming

21

Gloscol 2023

foreach - Gotcha

foreach loops are by default readonly

o Below code will give an error

string[] names = {"Fred", "Mina", "Amy", "Tam", "Dhami"};

foreach (string name in names)

{

Console.WriteLine($"Hello {name}.");
name += "s"; // Compile Error! Can't change foreach loop variable

C# Programming

22

Gloscol 2023

foreach writable - Solution - C# 7.3

o Use a foreach by reference
o Arrays must be cast to Span<T>

o Declare loop variable as ref

Span<string> names = new string[] { "Fred", "Mina", "Amy", "Tam", "Dhami" };
foreach (ref string name in names)

{
Console.WriteLine($"Hello {namel}.");
name += "s";

C# Programming

23

Gloscol 2023

switch statement

Purpose

e To evaluate/match a single/multiple variables for specific processing

Basic Syntax - Simple

switch (<variable to evalue>) {
case <value to match>: // One or more case statements allowed
// Code to execute
break; // To ensure exit from the switch
default:

// Code to execute if match not found
break;

}

C# Programming

24

Gloscol 2023

switch (Constant Pattern) - Example

Below weather conditions is evaluated against a constant/fixed pattern

WeatherConditions conditions = WeatherConditions.Raining;
switch(conditions) {
case WeatherContitions.Raining:
Console.WriteLine("It's raining!");
break;
case WeatherConditions.Sunny:
Console.WriteLine("It's a beautiful day!");
break;
default:
Console.WriteLine("What's the weather like?");
break;

C# Programming

25

Gloscol 2023

switch - with fall-through

If you don't use a break statement execution falls through to case below

Here Raining and Sleeting are handled the same way

WeatherConditions conditions = WeatherConditions.Raining;
switch(conditions) {
case WeatherContitions.Raining:
case WeatherContitions.Sleeting:
Console.WriteLine("It's a miserable day!");
break;
case WeatherConditions.Sunny:
Console.WriteLine("It's a beautiful day!");
break;

C# Programming

26

Gloscol 2023

switch - Relational pattern

Allows use of standard relational operators

byte age = 17;
switch(age) {
case < 16:
Console.WriteLine("Child");
break;
case < 18:
Console.WriteLine("Young adult");
break;
case >= 18 and < 65:
Console.WriteLine("Adult");
break;

C# Programming

27

Gloscol 2023

Pattern Matching with type and when clause

Here a nullable byte is cast to a byte if pattern matches

byte? enteredAge = null;
switch (enteredAge)

{
case byte age when age >= 18:
Console.WriteLine("Adult");
break;
default:
Console.WriteLine("Age Not Supplied");
break;
¥

e No match is found because enteredAge is null

C# Programming

28

Gloscol 2023

Using switch as a function guard

switch statements can be used to guard execution of critical code

void DoSomething(int a, int b) {

switch ((a, b)) {

case (>5, >10) when b % a == 0:
Console.WriteLine("A1ll is well!");
break;

default:

Console.WriteLine("0oops");
break;

C# Programming

29

Gloscol 2023

switch expressions

A switch can be expressed as a lambda expression

e Expression

string HowsTheweather(WeatherContitions condition) => condition switch {
WeatherContitions.Raining => "It's raining!";

WeatherConditions.Sunny => "It's a beautiful day!";
=> '"What's the weather like?";

C# Programming

30

Gloscol 2023

while statement

Purpose

o To repeatedly execute a block of code while a boolean test evaluates to true

Basic Syntax

while (<boolean expression(s) evaluates to true>)

{
}

// Code to execute

e Note: The code inside the while may never execute!
o if the boolean expression evaluates to false at the start

C# Programming

31

Gloscol 2023

while statement - Example

int count = 0;
while(count < 20)

{
Console.WritelLine(count);
count++;

while loop keeps executing

e Until count is equal to 20

e |[ncrementing count leads to loop clause eventually evaluating to false

C# Programming

32

Gloscol 2023

while statement - Early Termination

Use break to exit loop early

int count = 0;

while(count < 20) {
if (count == 15) break;
Console.WriteLine(count);
count++;

C# Programming

33

Gloscol 2023

Ensuring Loop code executes once

while loops may never execute code within

e Loop clause may prevent entry into code block

do while inverts the loop

int count = 20;
do
{

Console.WriteLine(count);
count++;
}while(count < 20);

What will happen in above code?

C# Programming

34

Gloscol 2023

Exceptions are cool

An exception is a report of an unhandled exceptional state

When an exception occurs we have some choices

e Should code execution just continue

e Should we at least check what the error is and ...
o see if there is something we can do about it

o report it - to the user or to a log

o should we ignore it?

C# Programming

35

Exceptions in C#

o Are deliberately fatal to the execution of the app
o If you don't handle am exception your app/transaction will fail

e Are hierarchical
o They are passed between functions from child to parent

o Then recursively up through the call stack

36

Exceptions are generated at the point of error

o Here a divide by zero occurs at the red star

void DoSomethingElse(int X){ «
var result =10/ x; ﬁ

}

» void DoSomething() {

Console.WriteLin("Before call");

DoSomethingElse(0);
Console.WriteLin("After call");

}

DoSomething();

C# Programming

Gloscol 2023

Exception Propagation

e Unless handled an exception propagates back through the call stack

C# Programming

void DoSomethingElse(int x){ 4

varresult=10/x;

}
void DoSomething() {

T Console.WriteLin("Before call");

DoSomethingElse(0); *¢
Console.WriteLin("After call");

}

DoSomething();

38

Handling an Exception

If an exception reaches the top of the call stack

o Execution of the application code terminates

e Control passes to apps the execution engine
o Could be the OS or a host process

Catching exceptions stops exception propagation

e Exception can be dealt with

o After exception catching normal execution flow resumes

39

Gloscol 2023

Catching Exceptions

Simple try catch block

try {
<do something that might fail>
I3

catch (<Exception>) {
<code to handle the failure>
}

C# Programming

40

Gloscol 2023

try catch - Example

void DoSomething(int x) {
try {
var result = 10 / x;
s

catch (Exception){
Console.WriteLine("An error has occurred!")
}

Console.WriteLine("Finished executing DoSomething()")

> DoSomething(0);
An error has occurred!
Finished Executing DoSomething

C# Programming

41

Gloscol 2023

In this chapter we learned ...

o Controlling execution flow
e if for, foreach, switch and while statements

e How to handle exceptions

C# Programming

42

