

MODULE SPECIFICATION

Part 1: Information							
Module Title	Operating Systems Security and Defensive Programming						
Module Code	UFCF	FHU-30-2	Level	Level 5			
For implementation from	2021-	22					
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty	Faculty of Environment & Technology		Field				
Department	FET I	Dept of Computer Sci & Creative Tech					
Module type:	Stand	dard					
Pre-requisites		Operating Systems and Architecture 2020-21, Programming 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: This module introduces students to the tasks of operating systems such as controlling and allocating memory, prioritising system requests, controlling input and output devices, facilitating data networking and managing files, including security and protection.

Students will learn the concepts of security protection in operating systems, such as hierarchical protection domains, and how they are employed to resist malware threats.

A design pattern is a description of how to solve a problem that can be used in many different situations and can help deepen the understanding of object-orientated programming and help improve software design and reusability. They can also be used for secure programming and students will learn how to apply them along with other methods and tools.

Educational Aims: This module contributes to cyber knowledge. It strengthens and deepens the computing underpinnings developed at earlier levels of study.

Outline Syllabus: security and protection

kernel security and protection

STUDENT AND ACADEMIC SERVICES

typical OS security features and how they may be exploited

approaches to defensive programming, for example input validation, least privilege, defence in depth, data sanitization, etc

authentication, authorisation and access control

resistance to malware techniques such as memory corruption, code injection, user/kernel space vulnerabilities, privilege escalation, etc.

design patterns for developing secure software

use of compiler features to support the creation of secure code

static and dynamic code analysis techniques

sources of secure programming practices, including employer or software development organisation, for different types of software systems (e.g., OWASP, CERT, etc.)

at least 1 formal method that may be applied to software development and its strengths and weaknesses when applied to development of software with security properties

Teaching and Learning Methods: Lecture sessions cover the technical knowledge required. Designated practical work is included to ensure that apprentices have absorbed and understood the key principles involved.

Part 3: Assessment

This module is assessed by a combination of techniques: a report (3,000 words) and a portfolio which includes a practical demonstration.

Component A

Students will be given a specification from which they have to produce a solution. This must incorporate the use of secure design patterns. They must show the research they have done to select the secure programming practices they will employ. As well as demonstrating the solution, apprentices will have to produce evidence of the design, development, implementation, test and debug.

Component B

Students will write a 3,000-word report that will require them to research the most prevalent threats to operating systems. They will then describe how operating system security features protect against these threats. Finally, they will show how operating systems should be configured to take the most advantage of these features.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component A		60 %	Portfolio showing evidence of design, development, implementation, testing and debugging of a solution to a security problem.
Report - Component B	✓	40 %	Report on contemporary operating system threats.
Resit Components	Final Assessment	Element weighting	Description

STUDENT AND ACADEMIC SERVICES

Portfolio - Component A		60 %	Re worked protfolio
Report - Component B	√	40 %	Re-worked report

Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes	Reference					
	Configure an Operating System in accordance with security policy.	MO1					
	Identify threats and the features that mitigate the threats.	MO2					
	Identify appropriate secure programming principles and design patterns and						
	analyse their fitness to address security issues	IVIOS					
	Research sources of secure programming practices and apply them	MO4					
	resourch sources of secure programming practices and apply them	I WOT					
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study	135					
	Total Independent Study Hours:	135					
	Placement Study Hours:						
	Placement	75					
	Total Placement Study Hours:	75					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	90					
	Total Scheduled Learning and Teaching Hours:	90					
	Hours to be allocated	300					
	Allocated Hours	300					
Reading List	The reading list for this module can be accessed via the following link: https://rl.talis.com/3/uwe/lists/20F18CAC-2867-6DAC-83CA-F36CCC443E5	5E.html					

STUDENT AND ACADEMIC SERVICES

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

BSc (Hons) Cyber Security Technical Professional (integrated degree) BSc (Hons) 2020-21