Gloscol 2023

Value and Reference Types

C# Programming

C# Programming



Gloscol 2023

In this chapter we will learn ...

e About value types and how to create them

o About reference types and how to create them

C# Programming



Value Types

C# Value Types include
e int, byte, short, unit64, uint16 etc

e float, double, decimal
e bool

e char

Usually small data types

o Used as fields in other types

e L ocal variables of functions



Gloscol 2023

Value Types - Quick Facts

Allocated on the stack when declared with a function

Defined by structs, tuples or enums

e Assigning one value type variable to another always creates a copy

Do not need Garbage collection
o (Can be attributes of an object which do)

Don't support inheritance

C# Programming



Gloscol 2023

Value Types Memory Allocation

e Added to the stack as local variables in functions

o Allocated to the heap as member variables of
classes

void DoSomething() {
int x = 10;
int y = 20;

e \alue is held within variable

C# Programming

20

10

Stack




Gloscol 2023

y
Value Type Stack Variables
20
e Pushed onto the stack when a function executes
e Pops off the stack once function has finished
executing X
e Simple memory model
void DoSomething() A 10
int x = 10;
int y = 20;
}
Stack

C# Programming



Gloscol 2023

Assigning a value type creates
an independent copy

void DoSomething() {
int x = 10;
int y = X;
¥
e X andy are independent of each other

o Changing x will not affect y

C# Programming

10

10

Stack




Gloscol 2023

Independent copies don't affect
each other

void DoSomething() {

int x = 10;
int y = X;
X = 20;

}

e X changesto 20

e yremains at 10. No side effect!

Value Types have no side effects

C# Programming

10

20

Stack




structs

Are Value Types

e Support
o Fields

o Methods
o Properties

o Events

Don't support inheritance

e Can implement one or more interfaces
o Support Composition

Used for small attribute style data types



Gloscol 2023

Defining new Value Types with struct

public struct Rectangle

{

public int Width ;

public int Height ;

public int Area => Width * Height;
¥

o Defines a value type containing two fields
o Width as an int

o Height as an int

C# Programming

10



Gloscol 2023

Declaring a custom Value Type

void DoSomething() {

Rectangle rl; // Declare variable

rl.width = 10; // Set field values
rl.Height = 2;

Console.WriteLine(rl.Area);

When DoSomething() executes

e Rectangle will be allocated onto stack

o Will contain Width and Height fields
o Will print 20

C# Programming

r1i

Width: 10
Height: 2

Stack

11




Gloscol 2023

Initializing structs

structs must be initialized before access

e Directly or via Properties, Methods, Events

void DoSomething() {
Rectangle rl; // Declare variable
rl.width = 10; // Set field values
// rl.Height = 2;
Console.WriteLine(rl.Area); // Error: Unassigned Variable

e All fields must be initialized first

C# Programming

12



Gloscol 2023

Using Constructor syntax

structs can have constructor functions

e Allows struct to be initialized with starter values

public struct Rectangle {
public int Width ;
public int Height ;
public int Area => Width * Height;
public Rectangle(int width, int height) {
Width = width;
Height = height;

C# Programming

13



Gloscol 2023

Using the struct constructor

Rectangle rl1 = new Rectangle(10, 2);
Console.WriteLine(rl.Area);

e Value Type behaves as normal
o Allocated onto stack if declared in a function

e Use of new invokes constructor

e No objects are created on Heap

C# Programming

r1i

Width: 10
Height: 2

Stack

14



Gloscol 2023

Constructor must initialize All fields of struct

struct Rectangle

{

public int Width;
public int Height;
public int X, Y;
public int Area => Width * Height;
public Rectangle(int width, int height) // Error - Must Initialise X and Y
{
Width = width;
Height = height;

e struct fields can be initialized at declaration

C# Programming

o C# 10 onwards

15



Gloscol 2023

Blank (parameterless) Constructor - C# 10

Structs can have a parameterless/blank constructor

e You must initialize all fields

public Rectangle()
{
Width = 0;
Height = 0;
}

C# Programming

16



Gloscol 2023

Copying structs

structs will be copied on assignment

> Rectangle rl
> Rectangle r2
> rl.Area

20

> r2.Area

20

new (10, 2);
rl;

e 12 is distinct copy of r1

C# Programming

r2

Width: 10
Height: 2

r1i

Width: 10
Height: 2

Stack

17




Recap

Value Types have limited side effects

> Rectangle rl
> Rectangle r2
> rl.Height = 5;
> rl.Area

50

> r2.Area

20

new (10, 2);
rl;

e Changing r1 does not impact r2

r2

Width: 10
Height: 2

r1i

Width: 10
Height: 5

Stack

18



Gloscol 2023

Checking struct equality

structs can be tested for equality using Equals method

> Rectangle rl1 = new (10, 2);
> Rectangle r2 = rl;

> rl.Equals(r2)

true

> rl.Height = 5;

> rl.Equals(r2)

false

e Cannot use == or != unless operator overloading is implemented

C# Programming



Gloscol 2023

Mutable structs

Mutable types allow their attributes to change

struct Rectangle {
public int Width {get; set;} // Property with setter
public int Height {get; set;} // Property with setter
public Rectangle(int width, int height) {
Width = width;
Height = height;

I3

public void Scale(int by) {
Width x= by;
Height *x= by;

I3

C# Programming

20



Gloscol 2023

Immutable structs

structs can be declared as immutable

e Type is declared as readonly

When you declare a type as readonly

o All fields must be declared readonly

o All properties must be declared readonly

C# Programming

21



Gloscol 2023

Example - Immutable structs

readonly struct Rectangle {
public readonly int Width {get; init;} // Property with init only setter
public readonly int Height {get; init;} // Property with init only setter
public Rectangle(int width, int height) {
Width = width;
Height = height;
I3
public Rectangle Scale(int by) {
// A new Rectangle is returned
return new Rectangle(Width * by, Height * by);

I3
public int Area => Width % Height;

e Notice the init only properties

e Scale method returns a new Rectangle. Does not mutate existing values

C# Programming

22



Gloscol 2023

Non Destructive mutation

By
e Declaring a struct with a parameterless constructor

e Using a with operator

Non destructive mutation can be achieved

new Rectangle(10, 2)

> Rectangle rl ;
with rl1 { Height = 5}; // Copy rl, mutate Height to 5

> Rectangle r2
r2.Area

C# Programming

23



Gloscol 2023

Flexible structs

e Consider the following struct

struct AccountNumber
int number;

{

public AccountNumber(int number)<{
this.number = number;

}

AccountNumber acc
AccountNumber num

C# Programming

new AccountNumber(1234); // Works!
1234; // Fails!!!!

24



Gloscol 2023

Implicit conversion

e You must add implicit conversion operators

struct AccountNumber {
int number;
public AccountNumber(int number){
this.number = number;
F

public static implicit operator AccountNumber(int value) {
if (value.ToString().Length == 7)
return new AccountNumber(value);

else
throw new ArgumentException(''Not a valid Account number");

C# Programming

25



Gloscol 2023

Implicit Casting
e How do we retrieve an int from an AccountNumber?

AccountNumber acc = new AccountNumber(1234):
int num = acc;

e Implement an implicit cast operator for int

struct AccountNumber {

public static implicit operator int(AccountNumber acc) => acc.number;

C# Programming

26



ref struct Types

Force allocation of structs onto the stack only

ref struct Rectangle {

}

That means ref structs. ...

e Can't be fields/properties of classes
e Cant be declared as an array or with a generic type
e Can'timplement interfaces

e Can't be function arguments

27



Gloscol 2023

struct recommendations

1. Keep them small - I[deally <=16-32 bytes
o They have to be allocated onto the stack

o They always get copied

2. Use them for genuine added value attribute types
o AccountNumbers, ZipCodes etc

3. Use with Interfaces not Inheritance

C# Programming

28



Gloscol 2023

Reference Variables

References essentially

o Reference objects
o Are accessible from managed code

o Auto dereference - no need for dereferencing operator

int x = 10;
ref int p = ref x; // Get reference to x
Console.WriteLine(p); // Can print p which will auto reference to x to print 10

C# Programming

29



Gloscol 2023

Reference Types - Quick Facts

Defined by two things
o A reference variable that points to

o On Object that is allocated on the heap

Defined by classes

e Assigning one reference type variable to another only copies the reference NOT the
object

e Need Garbage collection

Support inheritance

C# Programming

30



Classes and Objects

Reference Types are defined by classes (or records)

Class

o Defines a template for creating objects on the heap
o Defines attributes, methods, properties and events

Object

e Aninstance of a class in memory
e Occupies its own memory location

e Has own unique identity and separate set of attribute values

31



Gloscol 2023

Example - Classes

myCar

class Car A
public int speed; car | 0x2468
public string regNum;

Reference Variable

+
e Object created from class
Stack
// Reference Object
Car myCar = new Car();

C# Programming 32



Anatomy of a Reference Type

Reference Types have

o A reference variable
o Holds a reference/address of the object on the heap

e An object that stores the data defined by the attributes class
o Object is stored at a specific memory address on the heap

Reference variables act as small lightweight pointers

o References can be passed around app regardless of size of object

33



Gloscol 2023

Accessing objects

Access to the object requires the reference variable

Car myCar = new Car();
myCar.speed = 25;

C# Programming

34



Gloscol 2023

Working with References

Car myCar = new Car();

myCar.speed = 25;
Car yourCar = myCar;
myCar.speed = 45;
yourCar
Car | O0x4468
myCar
Car
Car | 0x2468
speed: 25
Stack

C# Programming



Assigning References

Assigning one reference to another

o Copies the reference not the object

e Result is two reference both referencing the same object

Reference Assignment creates side effects

e What you do to one of the reference copies applies to the common object

o Effect will be felt by other reference

36



Gloscol 2023

Assigning References - Example

Car myCar =
Car yourCar
myCar.speed

NV V VYV

5

new Car();

yourCar.speed

myCar,
25;

yourCar

Car

0x2468

myCar

Car

0x2468

Stack

C# Programming

Car

speed: 25

37



Gloscol 2023

Initializing Classes

Data Fields can be initialized

e At declaration
e Inside one or more constructors

o Auto Initialized to the types default value (null or zero)

C# Programming

38



Gloscol 2023

Auto Initialization

Fields will be initialized to the default values for their type

e O for numbers
e false for bool

o null for reference types like strings

public class Car {
public int speed ; // Initialised to O
public float

C# Programming

39



Gloscol 2023

Declarative Initialization

Fields can be explicitly initialized at declaration

public class Car A
public int speed = 0; // Initialised explictly to 0
s

C# Programming

40



Gloscol 2023

Initialization via Constructor

Constructors functions explicitly initialize an object

e Don't need to initialize all fields

public class Car A
public int speed ;
// Empty constructor function has no parameters
public Car(){
this.speed = 0;
I3

e An empty constructor will be generated if no other constructor is defined

C# Programming

41



Gloscol 2023

Overloaded Constructors

Multiple constructor functions can be defined

public class Car {
public int speed ;
public Car(){
this.speed = 0;
+

public Car(int speed){
this.speed = speed;
}

C# Programming

42



Gloscol 2023

Invoking Constructors

o Constructor invoked on object creation

> Car myCar = new Car(); // Invokes the blank constructor

> Car yourCar =
> myCar.speed

0

> yourCar.speed
5

C# Programming

new Car(5); // Invokes the Car(int speed) constructor

43



Gloscol 2023

Chaining Constructor Calls

One constructor can be called from another

e Can be used to reuse initialization code

o Use this keyword to call to other constructor

public class Car {
public int speed ;
public Car(): this(Q) {
s
public Car(int speed){
this.speed = speed;
I3

C# Programming

44



Gloscol 2023

null and reference
types

So what is null

e When reference isn't pointing to
an object
o nullis a default literal value
stored in reference variables

e null generally means empty or
unknown

C# Programming

yourCar

Car

null

myCar

Car

0x2468

Stack

Car

speed: 25

45



Gloscol 2023

nullable value types - C# 7.0

How can we represent unknown or empty with a value type variable?

e Declare a value type as nullable using
?
o .

o Generic Nullable

> 1int? age = null;

> Nullable<decimal> price = 5.75;
> age

null

> age == null && price '= null
true

o A base type can be assigned to it's nullable counter-part

C# Programming 46



Gloscol 2023

Working with nullable

Nullable types provide helper features

e HasValue - true if variable is not null

e Value - Actual non nullable value
o Nullable returns int

Nullable<decimal> price = 5.75;

if (price.HasValue) {
decimal tax = price.Value *x 0.2m;
Console.WriteLine($"Tax:{tax}");

C# Programming

47



Gloscol 2023

Take care with nullable

> int? age = null;
> int actualAge = age;
(1,9) error : Cannot implicitly convert from int? to int

e Explicit cast is required

> int actualAge = (int) age;

C# Programming

48



Gloscol 2023

Safely Working with nullable value types

Using the is operator

o Allows a safe guarded cast

int? age = 21;

if (age is int actualAge) {
Console.WriteLine($"Age is {actualAge}");

I3

C# Programming

49



Gloscol 2023

Operators and Nullable Types

Nullable Types will respect standard/overloaded operators

o Operators return null if a Nullable value in evaluation is null

> int? a = 10;

> int b = 2;
>a x b

20

> int? ¢ = null;
> b x C

null

C# Programming



Gloscol 2023

null operators

null coalescing operator ?? helps deal with null

string a null;

string b "Hello World";

// If a 1s not null assign a to c
// Otherwise assign b to c

string c = a ?? Db;

C# Programming

51



Gloscol 2023

Dealing with null references

Sometimes you will want to handle a null reference gracefully

List<string> names = null;

To add a name we could do

if (names is null) names = new List<string>();
names.Add("Fred");

or use ?7= operator

(names ?7= new List<String>()).Add("Fred"); // if names is null create a new List

C# Programming

52



Gloscol 2023

null coalescing operator

Safely returns null if the expression on the left side of an accessor evaluates to null

Use ? before . accessor

Car myCar = null;

myCar.Speed; // throws Null reference exception

int speed

int? speed = myCar?.Speed; // returns null if myCar 1is null, no exception

C# Programming

53



nullable reference types

Because nulls are responsible for so many Exceptions

We can now outlaw them!

e Change setting in Project file (.csproj)

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>

<Nullable>enable</Nullable>

</PropertyGroup>
</Project>

e Requires reference types to be initialized and not left null

54



Equality Testing

Reference Types allow basic equality testing
e Can check if references are equal
o use == or ReferenceEquals

e Cannot check data field equivalence by default
> Car myCar = new Car(5);
> Car yourCar = new Car(5);

> myCar == yourCar
false

myCar == yourCar compares references not speeds

55



Content/Attribute equality

Must be explicitly implemented by overriding methods

e Equals - Explicitly compares attributes of two objects and returns true/false

o GetHashCode - Generates a uniqgue hash code based on attribute combination

Can also override operators
o —_—

o = (must be implemented as a pair)

56



Gloscol 2023

Generating a Hash Code

e Override Equals and GetHashCode

o Use HashCode.Combine to generate a hash-code from attributes

class Car {
int speed;
string reg;
public override bool Equals(object obj){
return this.GetHashCode() == obj.GetHashCode();
s

public override int GetHashCode(){
return HashCode.Combine(speed, reg);
+

C# Programming

57



Gloscol 2023

Overriding comparison operator

You can override == and !=

o Implement Equals and GetHashCode first

class Car {

public static bool operator == (Car lhs, Car rhs) {
return lhs.Equals(rhs);
s

public static bool operator !=(Car 1lhs, Car rhs) {
return !1lhs.Equals(rhs);
s

o Use ReferenceEquals() to test for reference equality after operator override

C# Programming

58



Gloscol 2023

In this chapter we learned ...

e About value types and how to create them

o About reference types and how to create them

C# Programming

59



