Serious
ryptugraphy

A Practical Intmductmn
to Mudem

i
Y

Jean-Philippe Aumasson
Foreword by Matthew D. Green

tarch

SERIOUS CRYPTOGRAPHY

A Practical Introduction to Modern Encryption

Jean-Philippe Aumasson

0

no starch
press

San Francisco

SERIOUS CRYPTOGRAPHY. Copyright © 2018 by Jean-Philippe Aumasson.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system, without the prior written permission

of the copyright owner and the publisher.

ISBN-10: 1-59327-826-8
ISBN-13: 978-1-59327-826-7

Publisher: William Pollock

Production Editor: Laurel Chun

Cover Illustration: Jonny Thomas Interior Design: Octopod Studios
Developmental Editors: William Pollock, Jan Cash, and Annie Choi
Technical Reviewers: Erik Tews and Samuel Neves

Copyeditor: Barton D. Reed

Compositor: Meg Sneeringer

Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch
Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; sales@nostarch.com www.nostarch.com

Library of Congress Control Number: 2017940486

No Starch Press and the No Starch Press logo are registered trademarks of No Starch
Press, Inc. Other product and company names mentioned herein may be the
trademarks of their respective owners. Rather than use a trademark symbol with every
occurrence of a trademarked name, we are using the names only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor No Starch Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

mailto:sales@nostarch.com
https://www.nostarch.com

BRIEF CONTENTS

Foreword by Matthew D. Green
Preface

Abbreviations

Chapter 1: Encryption

Chapter 2: Randomness

Chapter 3: Cryptographic Security
Chapter 4: Block Ciphers

Chapter 5: Stream Ciphers

Chapter 6: Hash Functions

Chapter 7: Keyed Hashing

Chapter 8: Authenticated Encryption
Chapter 9: Hard Problems

Chapter 10: RSA

Chapter 11: Diffie-Hellman
Chapter 12: Elliptic Curves

Chapter 13: TLS

Chapter 14: Quantum and Post-Quantum

Index

CONTENTS IN DETAIL

FOREWORD by Matthew D. Green

PREFACE

This Book’s Approach

Who This Book Is For

How This Book Is Organized
Fundamentals
Symmetric Crypto
Asymmetric Crypto
Applications

Acknowledgments

ABBREVIATIONS

1
ENCRYPTION
The Basics
Classical Ciphers
The Caesar Cipher
The Vigenere Cipher
How Ciphers Work
The Permutation
The Mode of Operation
Why Classical Ciphers Are Insecure
Perfect Encryption: The One-Time Pad
Encrypting with the One-Time Pad
Why Is the One-Time Pad Secure?
Encryption Security
Attack Models
Security Goals

Security Notions

Asymmetric Encryption

When Ciphers Do More Than Encryption
Authenticated Encryption
Format-Preserving Encryption
Fully Homomorphic Encryption

Searchable Encryption
Tweakable Encryption
How Things Can Go Wrong
Weak Cipher
Wrong Model
Further Reading
2
RANDOMNESS

Random or Non-Random?
Randomness as a Probability Distribution
Entropy: A Measure of Uncertainty
Random Number Generators (RNGs) and Pseudorandom Number
Generators (PRNGs)
How PRNGs Work
Security Concerns
The PRNG Fortuna
Cryptographic vs. Non-Cryptographic PRNGs
The Uselessness of Statistical Tests
Real-World PRNGs
Generating Random Bits in Unix-Based Systems
The CryptGenRandom() Function in Windows
A Hardware-Based PRNG: RDRAND in Intel Microprocessors
How Things Can Go Wrong
Poor Entropy Sources
Insufficient Entropy at Boot Time
Non-cryptographic PRNG
Sampling Bug with Strong Randomness

Further Reading

3
CRYPTOGRAPHIC SECURITY

Defining the Impossible
Security in Theory: Informational Security
Security in Practice: Computational Security
Quantifying Security
Measuring Security in Bits
Full Attack Cost
Choosing and Evaluating Security Levels
Achieving Security
Provable Security
Heuristic Security
Generating Keys
Generating Symmetric Keys
Generating Asymmetric Keys
Protecting Keys
How Things Can Go Wrong
Incorrect Security Proof
Short Keys for Legacy Support
Further Reading

4
BLOCK CIPHERS
What Is a Block Cipher?
Security Goals
Block Size
The Codebook Attack
How to Construct Block Ciphers
A Block Cipher’s Rounds
The Slide Attack and Round Keys
Substitution—Permutation Networks

Feistel Schemes

The Advanced Encryption Standard (AES)
AES Internals
AES in Action

Implementing AES
Table-Based Implementations
Native Instructions
Is AES Secure?

Modes of Operation
The Electronic Codebook (ECB) Mode
The Cipher Block Chaining (CBC) Mode
How to Encrypt Any Message in CBC Mode
The Counter (CTR) Mode

How Things Can Go Wrong
Meet-in-the-Middle Attacks
Padding Oracle Attacks

Further Reading

5
STREAM CIPHERS
How Stream Ciphers Work
Stateful and Counter-Based Stream Ciphers
Hardware-Oriented Stream Ciphers
Feedback Shift Registers
Grain-128a
A5/1
Software-Oriented Stream Ciphers
RC4
Salsa20
How Things Can Go Wrong
Nonce Reuse
Broken RC4 Implementation
Weak Ciphers Baked Into Hardware

Further Reading

6
HASH FUNCTIONS

Secure Hash Functions
Unpredictability Again
Preimage Resistance
Collision Resistance
Finding Collisions
Building Hash Functions
Compression-Based Hash Functions: The Merkle-Damgard
Construction
Permutation-Based Hash Functions: Sponge Functions
The SHA Family of Hash Functions
SHA-1
SHA-2
The SHA-3 Competition
Keccak (SHA-3)
The BLAKE2 Hash Function
How Things Can Go Wrong
The Length-Extension Attack
Fooling Proof-of-Storage Protocols
Further Reading

7

KEYED HASHING

Message Authentication Codes (MACs)
MAC:s in Secure Communication
Forgery and Chosen-Message Attacks
Replay Attacks

Pseudorandom Functions (PRFs)
PRF Security
Why PRFs Are Stronger Than MACs

Creating Keyed Hashes from Unkeyed Hashes

The Secret-Prefix Construction

The Secret-Suffix Construction

The HMAC Construction

A Generic Attack Against Hash-Based MACs
Creating Keyed Hashes from Block Ciphers: CMAC

Breaking CBC-MAC

Fixing CBC-MAC

Dedicated MAC Designs
Poly1305
SipHash
How Things Can Go Wrong
Timing Attacks on MAC Verification
When Sponges Leak
Further Reading
8

AUTHENTICATED ENCRYPTION

Authenticated Encryption Using MACs
Encrypt-and-MAC
MAC-then-Encrypt
Encrypt-then-MAC
Authenticated Ciphers
Authenticated Encryption with Associated Data
Avoiding Predictability with Nonces
What Makes a Good Authenticated Cipher?
AES-GCM: The Authenticated Cipher Standard
GCM Internals: CTR and GHASH
GCM Security
GCM Efficiency
OCB: An Authenticated Cipher Faster than GCM
OCB Internals
OCB Security

OCSB Efficiency
SIV: The Safest Authenticated Cipher?
Permutation-Based AEAD
How Things Can Go Wrong
AES-GCM and Weak Hash Keys
AES-GCM and Small Tags
Further Reading

9
HARD PROBLEMS

Computational Hardness
Measuring Running Time
Polynomial vs. Superpolynomial Time
Complexity Classes
Nondeterministic Polynomial Time
NP-Complete Problems
The P vs. NP Problem
The Factoring Problem
Factoring Large Numbers in Practice
Is Factoring NP-Complete?
The Discrete Logarithm Problem
What Is a Group?
The Hard Thing
How Things Can Go Wrong
When Factoring Is Easy
Small Hard Problems Aren’t Hard

Further Reading

10
RSA

The Math Behind RSA
The RSA Trapdoor Permutation
RSA Key Generation and Security

Encrypting with RSA
Breaking Textbook RSA Encryption’s Malleability
Strong RSA Encryption: OAEP
Signing with RSA
Breaking Textbook RSA Signatures
The PSS Signature Standard
Full Domain Hash Signatures
RSA Implementations
Fast Exponentiation Algorithm: Square-and-Multiply

Small Exponents for Faster Public-Key Operations
The Chinese Remainder Theorem

How Things Can Go Wrong
The Bellcore Attack on RSA-CRT
Sharing Private Exponents or Moduli
Further Reading

11

DIFFIE-HELLMAN

The Diffie-Hellman Function

The Diffie-Hellman Problems
The Computational Diffie-Hellman Problem
The Decisional Diffie-Hellman Problem
More Diffie-Hellman Problems

Key Agreement Protocols
An Example of Non-DH Key Agreement
Attack Models for Key Agreement Protocols
Performance

Diffie-Hellman Protocols
Anonymous Diffie-Hellman
Authenticated Diffie-Hellman
Menezes—Qu—Vanstone (MQV)

How Things Can Go Wrong
Not Hashing the Shared Secret

Legacy Diffie-Hellman in TLS

Unsafe Group Parameters
Further Reading

12
ELLIPTIC CURVES
What Is an Elliptic Curve?
Elliptic Curves over Integers
Adding and Multiplying Points
Elliptic Curve Groups
The ECDLP Problem
Diffie-Hellman Key Agreement over Elliptic Curves
Signing with Elliptic Curves
Encrypting with Elliptic Curves
Choosing a Curve
NIST Curves
Curve25519
Other Curves
How Things Can Go Wrong
ECDSA with Bad Randomness
Breaking ECDH Using Another Curve

Further Reading
13
TLS
Target Applications and Requirements
The TLS Protocol Suite
The TLS and SSL Family of Protocols: A Brief History
TLS in a Nutshell
Certificates and Certificate Authorities
"The Record Protocol

The TLS Handshake Protocol
TLS 1.3 Cryptographic Algorithms

TLS 1.3 Improvements over TLS 1.2
Downgrade Protection
Single Round-Trip Handshake
Session Resumption

The Strengths of TLS Security
Authentication
Forward Secrecy

How Things Can Go Wrong
Compromised Certificate Authority
Compromised Server
Compromised Client
Bugs in Implementations

Further Reading

14
QUANTUM AND POST-QUANTUM

How Quantum Computers Work
Quantum Bits
Quantum Gates
Quantum Speed-Up
Exponential Speed-Up and Simon’s Problem
The Threat of Shor’s Algorithm
Shor’s Algorithm Solves the Factoring Problem
Shor’s Algorithm and the Discrete Logarithm Problem
Grover’s Algorithm
Why Is It So Hard to Build a Quantum Computer?
Post-Quantum Cryptographic Algorithms
Code-Based Cryptography
Lattice-Based Cryptography
Multivariate Cryptography
Hash-Based Cryptography
How Things Can Go Wrong

Unclear Security Level

Fast Forward: What Happens if It’s Too Late?

Implementation Issues
Further Reading

INDEX

FOREWORD

If you've read a book or two on computer security, you may have
encountered a common perspective on the field of cryptography.
“Cryptography,” they say, “is the strongest link in the chain.” Strong
praise indeed, but it’s also somewhat dismissive. If cryptography is in fact
the strongest part of your system, why invest time improving it when
there are so many other areas of the system that will benefit more from
your attention?

If there’s one thing that I hope you take away from this book, it’s that
this view of cryptography is idealized; it’s largely a myth. Cryptography in
theory is strong, but cryptography in practice is as prone to failure as any
other aspect of a security system. This is particularly true when
cryptographic implementations are developed by non-experts without
sufficient care or experience, as is the case with many cryptographic
systems deployed today. And it gets worse: when cryptographic
implementations fail, they often do so in uniquely spectacular ways.

But why should you care, and why this book?

When I began working in the field of applied cryptography nearly two
decades ago, the information available to software developers was often
piecemeal and outdated. Cryptographers developed algorithms and
protocols, and cryptographic engineers implemented them to create
opaque, poorly documented cryptographic libraries designed mainly for
other experts. There was—and there has been—a huge divide between
those who know and understand cryptographic algorithms and those who
use them (or ignore them at their peril). There are a few decent textbooks
on the market, but even fewer have provided useful tools for the
practitioner.

The results have not been pretty. I'm talking about compromises with
labels like “CVE” and “Severity: High,” and in a few alarming cases,
attacks on slide decks marked “TOP SECRET.” You may be familiar
with some of the more famous examples if only because they’ve affected
systems that you rely on. Many of these problems occur because

cryptography is subtle and mathematically elegant, and because
cryptographic experts have failed to share their knowledge with the
engineers who actually write the software.

Thankfully, this has begun to change and this book is a symptom of
that change.

Serious Cryptography was written by one of the foremost experts in
applied cryptography, but it’s not targeted at other experts. Nor, for that
matter, is it intended as a superficial overview of the field. On the
contrary, it contains a thorough and up-to-date discussion of
cryptographic engineering, designed to help practitioners who plan to
work in this field do better. In these pages, you’ll learn not only how
cryptographic algorithms work, but how to use them in real systems.

The book begins with an exploration of many of the key cryptographic
primitives, including basic algorithms like block ciphers, public
encryption schemes, hash functions, and random number generators.
Each chapter provides working examples of how the algorithms work and
what you should or should 7ot do. Final chapters cover advanced subjects
such as TLS, as well as the future of cryptography—what to do after
quantum computers arrive to complicate our lives.

While no single book can solve all our problems, a bit of knowledge
can go a long way. This book contains plenty of knowledge. Perhaps
enough to make real, deployed cryptography live up to the high
expectations that so many have of it.

Happy reading.

Matthew D. Green

Professor

Information Security Institute
Johns Hopkins University

PREFACE

I wrote this book to be the one I wish I had when I started learning
crypto. In 2005, I was studying for my masters degree near Paris, and I
eagerly registered for the crypto class in the upcoming semester.
Unfortunately, the class was canceled because too few students had
registered. “Crypto is too hard,” the students argued, and instead, they
enrolled en masse in the computer graphics and database classes.

I’ve heard “crypto is hard” more than a dozen times since then. But is
crypto really that hard? To play an instrument, master a programming
language, or put the applications of any fascinating field into practice, you
need to learn some concepts and symbols, but doing so doesn’t take a
PhD. I think the same applies to becoming a competent cryptographer. I
also believe that crypto is perceived as hard because cryptographers
haven’t done a good job of teaching it.

Another reason why I felt the need for this book is that crypto is no
longer just about crypto—it has expanded into a multidisciplinary field.
To do anything useful and relevant in crypto, you’ll need some
understanding of the concepts around crypto: how networks and
computers work, what users and systems need, and how attackers can
abuse algorithms and their implementations. In other words, you need a
connection to reality.

This Book’s Approach

The initial title of this book was Crypro for Real to stress the practice-
oriented, real-world, no-nonsense approach I aimed to follow. I didn’t
want to make cryptography approachable by dumbing it down, but

instead tie it to real applications. I provide source code examples and
describe real bugs and horror stories.

Along with a clear connection to reality, other cornerstones of this
book are its simplicity and modernity. I focus on simplicity in form more
than in substance: I present many non-trivial concepts, but without the
dull mathematical formalism. Instead, 1 attempt to impart an
understanding of cryptography’s core ideas, which are more important
than remembering a bunch of equations. To ensure the book’s
modernity, I cover the latest developments and applications of
cryptography, such as TLS 1.3 and post-quantum cryptography. I don’t
discuss the details of obsolete or insecure algorithms such as DES or
MDS5. An exception to this is RC4, but it’s only included to explain how
weak it is and to show how a stream cipher of its kind works.

Serious Cryptography isn’t a guide for crypto software, nor is it a
compendium of technical specifications—stuff that you’ll easily find
online. Instead, the foremost goal of this book is to get you excited about
crypto and to teach you its fundamental concepts along the way.

Who This Book Is For

While writing, I often imagined the reader as a developer who’d been
exposed to crypto but still felt clueless and frustrated after attempting to
read abstruse textbooks and research papers. Developers often need—and
want—a better grasp of crypto to avoid unfortunate design choices, and I

hope this book will help.

But if you aren’t a developer, don’t worry! The book doesn’t require
any coding skills, and is accessible to anyone who understands the basics
of computer science and college-level math (notions of probabilities,
modular arithmetic, and so on).

This book can nonetheless be intimidating, and despite its relative
accessibility, it requires some effort to get the most out of it. I like the
mountaineering analogy: the author paves the way, providing you with
ropes and ice axes to facilitate your work, but you make the ascent
yourself. Learning the concepts in this book will take an effort, but there

will be a reward at the end.

How This Book Is Organized

The book has fourteen chapters, loosely split into four parts. The
chapters are mostly independent from one another, except for Chapter 9,
which lays the foundations for the three subsequent chapters. I also
recommend reading the first three chapters before anything else.

Fundamentals

Chapter 1: Encryption introduces the notion of secure encryption,
from weak pen-and-paper ciphers to strong, randomized encryption.
Chapter 2: Randomness describes how a pseudorandom generator
works, what it takes for one to be secure, and how to use one
securely.

Chapter 3: Cryptographic Security discusses theoretical and
practical notions of security, and compares provable security with
probable security.

Symmetric Crypto

Chapter 4: Block Ciphers deals with ciphers that process messages
block per block, focusing on the most famous one, the Advanced

Encryption Standard (AES).

Chapter 5: Stream Ciphers presents ciphers that produce a stream
of random-looking bits that are XORed with messages to be
encrypted.

Chapter 6: Hash Functions is about the only algorithms that
don’t work with a secret key, which turn out to be the most
ubiquitous crypto building blocks.

Chapter 7: Keyed Hashing explains what happens if you combine a
hash function with a secret key, and how this serves to authenticate
messages.

Chapter 8: Authenticated Encryption shows how some algorithms

can both encrypt and authenticate a message with examples, such as

the standard AES-GCM.
Asymmetric Crypto

e Chapter 9: Hard Problems lays out the fundamental concepts
behind public-key encryption, using notions from computational
complexity.

e Chapter 10: RSA leverages the factoring problem in order to build
secure encryption and signature schemes with a simple arithmetic
operation.

e Chapter 11: Diffie-Hellman extends asymmetric cryptography to
the notion of key agreement, wherein two parties establish a secret
value using only non-secret values.

e Chapter 12: Elliptic Curves provides a gentle introduction to
elliptic curve cryptography, which is the fastest kind of asymmetric

cryptography.
Applications

e Chapter 13: TLS focuses on Transport Layer Security (TLS),
arguably the most important protocol in network security.

e Chapter 14: Quantum and Post-Quantum concludes with a note
of science fiction by covering the concepts of quantum computing
and a new kind of cryptography.

Acknowledgments

I’d like to thank Jan, Annie, and the rest of the No Starch staff who
contributed to this book, especially Bill for believing in this project from
the get-go, for his patience digesting difficult topics, and for turning my
clumsy drafts into readable pages. I am also thankful to Laurel for making
the book look so nice and for handling my many correction requests.

On the technical side, the book would contain many more errors and

inaccuracies without the help of the following people: Jon Callas, Bill
Cox, Niels Ferguson, Philipp Jovanovic, Samuel Neves, David Reid,
Phillip Rogaway, Erik Tews, as well as all readers of the early access
version who reported errors. Finally, thanks to Matt Green for writing
the foreword.

I’d also like to thank my employer, Kudelski Security, for allowing me
time to work on this book. Finally, I offer my deepest thanks to Alexandra
and Melina for their support and patience.

Lausanne, 05/17/2017 (three prime numbers)

ABBREVIATIONS

AE authenticated encryption

AEAD authentication encryption with associated data
AES Advanced Encryption Standard

AES-NI AES native instructions

AKA authenticated key agreement

API application program interface

ARX add-rotate-XOR

ASIC application-specific integrated circuit

CA certificate authority

Competition for Authenticated Encryption: Security,

CAESAR Applicability, and Robustness
CBC cipher block chaining
CCA chosen-ciphertext attackers

CDH computational Diffie-Hellman
CMAC cipher-based MAC

COA ciphertext-only attackers
CPA chosen-plaintext attackers
CRT Chinese remainder theorem
CTR counter mode

Cvp closest vector problem
DDH decisional Diffie-Hellman
DES Data Encryption Standard
DH Diffie-Hellman

DLP discrete logarithm problem

DRBG deterministic random bit generator

ECB
ECC
ECDH
ECDLP
ECDSA
FDH
FHE
FIPS
FPE
FPGA
FSR
GCD
GCM
GNFS
HKDF
HMAC
HTTPS
IND

IP

KDF

LFSR
LSB
LWE
MAC
MD

electronic codebook

elliptic curve cryptography

elliptic curve Diffie-Hellman
elliptic-curve discrete logarithm problem
elliptic-curve digital signature algorithm
Full Domain Hash

fully homomorphic encryption

Federal Information Processing Standards
format-preserving encryption
field-programmable gate array
feedback shift register

greatest common divisor

Galois Counter Mode

general number field sieve
HMAC-based key derivation function
hash-based message authentication code
HTTP Secure

indistinguishablity

Internet Protocol

initial value

key derivation function
known-plaintext attackers

linear feedback shift register

least significant bit

learning with errors

messsage authentication code

message digest

MitM
MQ
MQV
MSB
MT
NFSR
NIST
NM
NP
OAEP
OCB

PLD
PRF
PRNG
PRP
PSK
PSS
QR
QRNG
RFC
RNG
RSA
SHA
SIS
SIV
SPN

meet-in-the-middle

multivariate quadratics
Menezes—(Qu—Vanstone

most significant bit

Mersenne Twister

nonlinear feedback shift register
National Institute of Standards and Technology
non-malleability

nondeterministic polynomial-time
Optimal Asymmetric Encryption Padding
offset codebook

polynomial time

programmable logic device
pseudorandom function
pseudorandom number generator
pseudorandom permutation
pre-shared key

Probabilistic Signature Scheme
quarter-round

quantum random number generator
request for comments

random number generator
Rivest-Shamir-Adleman

Secure Hash Algorithm

short integer solution

synthetic IV

substitution—permutation network

SSH

SSL
TE
TLS
TMTO
UDP
UH
WEP
WOTS
XOR

Secure Shell

Secure Socket Layer
tweakable encryption
Transport Layer Security
time-memory trade-off

User Datagram Protocol
universal hash

Wireless Encrypted Protocol
Winternitz one-time signature

exclusive OR

1
ENCRYPTION

Encryption is the principal application of cryptography; it makes data
incomprehensible in order to ensure its confidentiality. Encryption uses an
algorithm called a cipher and a secret value called the key; if you don’t
know the secret key, you can’t decrypt, nor can you learn any bit of
information on the encrypted message—and neither can any attacker.
"This chapter will focus on symmetric encryption, which is the simplest
kind of encryption. In symmetric encryption, the key used to decrypt is the
same as the key used to encrypt (unlike asymmetric encryption, or public-key
encryption, in which the key used to decrypt is different from the key used
to encrypt). You’'ll start by learning about the weakest forms of symmetric
encryption, classical ciphers that are secure against only the most illiterate
attacker, and then move on to the strongest forms that are secure forever.

The Basics

When we’re encrypting a message, plaintext refers to the unencrypted
message and ciphertext to the encrypted message. A cipher is therefore
composed of two functions: encryption turns a plaintext into a ciphertext,
and decryption turns a ciphertext back into a plaintext. But we’ll often say
“cipher” when we actually mean “encryption.” For example, Figure 1-1
shows a cipher, E, represented as a box taking as input a plaintext, P, and
a key, K, and producing a ciphertext, C, as output. I'll write this relation
as C = E(K, P). Similarly, when the cipher is in decryption mode, I'll write
D(K, C).

- %
- %

P—p! E }|—=C C—p! D }|—mP

Figure 1-1: Basic encryption and decryption

For some ciphers, the ciphertext is the same size as the plaintext; for some
others, the ciphertext is slightly longer. However, ciphertexts can never be
shorter than plaintexts.

Classical Ciphers

Classical ciphers are ciphers that predate computers and therefore work
on letters rather than on bits. They are much simpler than a modern
cipher like DES—for example, in ancient Rome or during WWI, you
couldn’t use a computer chip’s power to scramble a message, so you had
to do everything with only pen and paper. There are many classical
ciphers, but the most famous are the Caesar cipher and Vigenere cipher.

The Caesar Cipher

The Caesar cipher is so named because the Roman historian Suetonius
reported that Julius Caesar used it. It encrypts a message by shifting each
of the letters down three positions in the alphabet, wrapping back around
to A if the shift reaches Z. For example, ZOO encrypts to CRR,
FDHVDU decrypts to CAESAR, and so on, as shown in Figure 1-2.
There’s nothing special about the value 3; it’s just easier to compute in
one’s head than 11 or 23.

The Caesar cipher is super easy to break: to decrypt a given ciphertext,
simply shift the letters three positions back to retrieve the plaintext. That
said, the Caesar cipher may have been strong enough during the time of
Crassus and Cicero. Because no secret key is involved (it’s always 3), users
of Caesar’s cipher only had to assume that attackers were illiterate or too

uneducated to figure it out—an assumption that’s much less realistic
today. (In fact, in 2006, the Italian police arrested a mafia boss after
decrypting messages written on small scraps of paper that were encrypted

using a variant of the Caesar cipher: ABC was encrypted to 456 instead of
DEF, for example.)

L

>>53 >33>3 >33 >>53 >33>3 >»53

~— ()
-t L
-— T
a— 7O

i < -l

. ¥
|

- T —

<3 <<<3 <<<3 <

A E
Figure 1-2: The Caesar cipher

<<<3 <

A

() ~—
N ———

Could the Caesar cipher be made more secure? You can, for example,
imagine a version that uses a secret shift value instead of always using 3,
but that wouldn’t help much because an attacker could easily try all 25
possible shift values until the decrypted message makes sense.

The Vigenere Cipher

It took about 1500 years to see a meaningful improvement of the Caesar
cipher in the form of the Vigenére cipher, created in the 16th century by
an Italian named Giovan Battista Bellaso. The name “Vigenere” comes
from the Frenchman Blaise de Vigenere, who invented a different cipher
in the 16th century, but due to historical misattribution, Vigenere’s name
stuck. Nevertheless, the Vigenere cipher became popular and was later
used during the American Civil War by Confederate forces and during
WWI by the Swiss Army, among others.

The Vigenere cipher is similar to the Caesar cipher, except that letters

aren’t shifted by three places but rather by values defined by a key, a
collection of letters that represent numbers based on their position in the
alphabet. For example, if the key is DUH, letters in the plaintext are
shifted using the values 3, 20, 7 because D is three letters after A, U is 20
letters after A, and H is seven letters after A. The 3, 20, 7 pattern repeats
until you’ve encrypted the entire plaintext. For example, the word
CRYPTO would encrypt to FLFSNV using DUH as the key: C'is shifted
three positions to F, R is shifted 20 positions to L, and so on. Figure 1-3

illustrates this principle when encrypting the sentence THEY DRINK
THE TEA.

T H E Y D R I N K T H E T E A

t ¥ ¢+ v ¢+ ¥ ¢ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 3

D~3U~20|H~7||D~3||U~20|H~7|JD~3||U~20|H~7|JD~3||JU~20|H~7||D~3|JU~20]|H~7
5533 ||>5220]] 557 || 523 ||>5520]] =557 || 253 ||>>20|| 5557 || 5553 [|>>=20|| =7 || 5553 ||>>=20|| =>>7

R EEEREEERERERERE

W B L B X Y L H R W B L W Y H
Figure 1-3: The Vigenere cipher

The Vigenere cipher is clearly more secure than the Caesar cipher, yet
it’s still fairly easy to break. The first step to breaking it is to figure out
the key’s length. For example, take the example in Figure 1-3, wherein
THEY DRINK THE TEA encrypts to WBLBXYLHRWBLWYH with
the key DUH. (Spaces are usually removed to hide word boundaries.)
Notice that in the ciphertext WBLBXYLHRWBLWYH, the group of
three letters WBL appears twice in the ciphertext at nine-letter intervals.
This suggests that the same three-letter word was encrypted using the
same shift values, producing WBL each time. A cryptanalyst can then
deduce that the key’s length is either nine or a value divisible by nine
(that is, three). Furthermore, they may guess that this repeated three-
letter word is THE and therefore determine DUH as a possible
encryption key.

The second step to breaking the Vigenere cipher is to determine the
actual key using a method called frequency analysis, which exploits the
uneven distribution of letters in languages. For example, in English, E is

the most common letter, so if you find that X is the most common letter
in a ciphertext, then the most likely plaintext value at this position is E.

Despite its relative weakness, the Vigeneére cipher may have been good
enough to securely encrypt messages when it was used. First, because the
attack just outlined needs messages of at least a few sentences, it wouldn’t
work if the cipher was used to encrypt only short messages. Second, most
messages needed to be secret only for short periods of time, so it didn’t
matter if ciphertexts were eventually decrypted by the enemy. (The 19th-
century cryptographer Auguste Kerckhoffs estimated that most encrypted
wartime messages required confidentiality for only three to four hours.)

How Ciphers Work

Based on simplistic ciphers like the Caesar and Vigenere ciphers, we can
try to abstract out the workings of a cipher, first by identifying its two
main components: a permutation and a mode of operation. A permutation
is a function that transforms an item (in cryptography, a letter or a group
of bits) such that each item has a unique inverse (for example, the Caesar
cipher’s three-letter shift). A mode of operation is an algorithm that uses a
permutation to process messages of arbitrary size. The mode of the
Caesar cipher is trivial: it just repeats the same permutation for each
letter, but as you’ve seen, the Vigenere cipher has a more complex mode,
where letters at different positions undergo different permutations.

In the following sections, I discuss in more detail what these are and
how they relate to a cipher’s security. I use each component to show why
classical ciphers are doomed to be insecure, unlike modern ciphers that
run on high-speed computers.

The Permutation

Most classical ciphers work by replacing each letter with another letter—
in other words, by performing a substitution. In the Caesar and Vigenere
ciphers, the substitution is a shift in the alphabet, though the alphabet or
set of symbols can vary: instead of the English alphabet, it could be the

Arabic alphabet; instead of letters, it could be words, numbers, or

ideograms, for example. The representation or encoding of information is
a separate matter that is mostly irrelevant to security. (We're just
considering Latin letters because that’s what classical ciphers use.)

A cipher’s substitution can’t be just any substitution. It should be a
permutation, which is a rearrangement of the letters A to Z, such that
each letter has a unique inverse. For example, a substitution that
transforms the letters A, B, C, and D, respectively to C, A, D, and B is a
permutation, because each letter maps onto another single letter. But a
substitution that transforms A, B, C, D to D, A, A, C is not a permutation,
because both B and C map onto A. With a permutation, each letter has
exactly one inverse.

Still, not every permutation is secure. In order to be secure, a cipher’s
permutation should satisfy three criteria:

¢ The permutation should be determined by the key, so as to keep
the permutation secret as long as the key is secret. In the Vigenere
cipher, if you don’t know the key, you don’t know which of the 26
permutations was used; hence, you can’t easily decrypt.

e Different keys should result in different permutations.
Otherwise, it becomes easier to decrypt without the key: if different
keys result in identical permutations, that means there are fewer
distinct keys than distinct permutations, and therefore fewer
possibilities to try when decrypting without the key. In the Vigenere
cipher, each letter from the key determines a substitution; there are
26 distinct letters, and as many distinct permutations.

e The permutation should look random, loosely speaking. There
should be no pattern in the ciphertext after performing a
permutation, because patterns make a permutation predictable for an
attacker, and therefore less secure. For example, the Vigenere
cipher’s substitution is pretty predictable: if you determine that 4
encrypts to F, you could conclude that the shift value is 5 and you
would also know that B encrypts to G, that C encrypts to H, and so
on. However, with a randomly chosen permutation, knowing that 4

encrypts to ' would only tell you that B does nor encrypt to F.

We'll call a permutation that satisfies these criteria a secure permutation.
But as you’ll see next, a secure permutation is necessary but not sufficient
on its own for building a secure cipher. A cipher will also need a mode of
operation to support messages of any length.

The Mode of Operation

Say we have a secure permutation that transforms A to X, B to M, and N
to L, for example. The word BANANA therefore encrypts to MXLXLX,
where each occurrence of A is replaced by an X. Using the same
permutation for all the letters in the plaintext thus reveals any duplicate
letters in the plaintext. By analyzing these duplicates, you might not learn
the entire message, but you’ll learn something about the message. In the
BANANA example, you don’t need the key to guess that the plaintext has
the same letter at the three X positions and another same letter at the two
L positions. So if you know, for example, that the message is a fruit’s
name, you could determine that it’'s BANANA rather than CHERRY,
LYCHEE, or another six-letter fruit.

The mode of operation (or just 7z0de) of a cipher mitigates the exposure
of duplicate letters in the plaintext by using different permutations for
duplicate letters. The mode of the Vigenere cipher partially addresses
this: if the key is N letters long, then N different permutations will be
used for every N consecutive letters. However, this can still result in
patterns in the ciphertext because every Nth letter of the message uses the
same permutation. That’s why frequency analysis works to break the
Vigenere cipher, as you saw earlier.

Frequency analysis can be defeated if the Vigenere cipher only encrypts
plaintexts that are of the same length as the key. But even then, there’s
another problem: reusing the same key several times exposes similarities
between plaintexts. For example, with the key KYN, the words TIE and
PIE encrypt to DGR and ZGR, respectively. Both end with the same two
letters (GR), revealing that both plaintexts share their last two letters as

well. Finding these patterns shouldn’t be possible with a secure cipher.

To build a secure cipher, you must combine a secure permutation with
a secure mode. Ideally, this combination prevents attackers from learning
anything about a message other than its length.

Why Classical Ciphers Are Insecure

Classical ciphers are doomed to be insecure because they’re limited to
operations you can do in your head or on a piece of paper. They lack the
computational power of a computer and are easily broken by simple
computer programs. Let’s see the fundamental reason why that simplicity
makes them insecure in today’s world.

Remember that a cipher’s permutation should look random in order to
be secure. Of course, the best way to look random is to be random—that
is, to select every permutation randomly from the set of all permutations.
And there are many permutations to choose from. In the case of the 26-

288

letter English alphabet, there are approximately 2°° permutations:

26! = 403291461126605635584000000 ~ 288

Here, the exclamation point (!) is the factorial symbol, defined as
follows:

n=nxn-1)xn-2)x...x3x2

(To see why we end up with this number, count the permutations as
lists of reordered letters: there are 26 choices for the first possible letter,
then 25 possibilities for the second, 24 for the third, and so on.) This
number is huge: it’s of the same order of magnitude as the number of
atoms in the human body. But classical ciphers can only use a small
fraction of those permutations—namely, those that need only simple
operations (such as shifts) and that have a short description (like a short
algorithm or a small look-up table). The problem is that a secure
permutation can’t accommodate both of these limitations.

You can get secure permutations using simple operations by picking a

random permutation, representing it as a table of 25 letters (enough to
represent a permutation of 26 letters, with the 26th one missing), and
applying it by looking up letters in this table. But then you wouldn’t have
a short description. For example, it would take 250 letters to describe 10
different permutations, rather than just the 10 letters used in the
Vigenere cipher.

You can also produce secure permutations with a short description.
Instead of just shifting the alphabet, you could use more complex
operations such as addition, multiplication, and so on. That’s how
modern ciphers work: given a key of typically 128 or 256 bits, they
perform hundreds of bit operations to encrypt a single letter. This
process is fast on a computer that can do billions of bit operations per
second, but it would take hours to do by hand, and would still be
vulnerable to frequency analysis.

Perfect Encryption: The One-Time Pad

Essentially, a classical cipher can’t be secure unless it comes with a huge
key, but encrypting with a huge key is impractical. However, the one-
time pad is such a cipher, and it is the most secure cipher. In fact, it
guarantees perfect secrecy: even if an attacker has unlimited computing
power, it’s impossible to learn anything about the plaintext except for its
length.

In the next sections, I'll show you how a one-time pad works and then
offer a sketch of its security proof.

Encrypting with the One-Time Pad

The one-time pad takes a plaintext, P, and a random key, K, that’s the
same length as P and produces a ciphertext C, defined as

C=Po®K

where C, P, and K are bit strings of the same length and where @ is the
bitwise exclusive OR operation (XOR), definedas0@0=0,0@1=1,1¢
0=1,161=0.

NOTE

I'm presenting the one-time pad in its usual form, as working on bits, but it
can be adapted to other symbols. With letters, for example, you would end up
with a variant of the Caesar cipher with a shift index picked at random for
each letter.

The one-time pad’s decryption is identical to encryption; it’s just an
XOR: P = C @ K. Indeed, we can verify C ® K= P ® K ® K = P because
XORing K with itself gives the all-zero string 000 . . . 000. That’s it—

even simpler than the Caesar cipher.

For example, if P= 01101101 and K = 10110100, then we can calculate
the following:

C=P®K=01101101#©10110100 = 11011001
Decryption retrieves P by computing the following:

P=C#®K=11011001 # 10110100 =01101101

The important thing is that a one-time pad can only be used one time:
each key K should be used only once. If the same K is used to encrypt P;

and P, to Cy and C5, then an eavesdropper can compute the following:
C0C=P°K)®(P,®K)=P;®P,®K®K=P;®P,

An eavesdropper would thus learn the XOR difference of P; and P,,

information that should be kept secret. Moreover, if either plaintext
message is known, then the other message can be recovered.

Of course, the one-time pad is utterly inconvenient to use because it
requires a key as long as the plaintext and a new random key for each new
message or group of data. To encrypt a one-terabyte hard drive, you’d
need another one-terabyte drive to store the key! Nonetheless, the one-
time pad has been used throughout history. For example, it was used by

the British Special Operations Executive during WWII, by KGB spies, by
the NSA, and is still used today in specific contexts. (I've heard of Swiss
bankers who couldn’t agree on a cipher trusted by both parties and ended
up using one-time pads, but I don’t recommend doing this.)

Why Is the One-Time Pad Secure?

Although the one-time pad is not practical, it’s important to understand
what makes it secure. In the 1940s, American mathematician Claude
Shannon proved that the one-time pad’s key must be at least as long as
the message to achieve perfect secrecy. The proof’s idea is fairly simple.
You assume that the attacker has unlimited power, and thus can try all the
keys. The goal is to encrypt such that the attacker can’t rule out any
possible plaintext given some ciphertext.

The intuition behind the one-time pad’s perfect secrecy goes as
follows: if K is random, the resulting C looks as random as K to an
attacker because the XOR of a random string with any fixed string yields
a random string. To see this, consider the probability of getting 0 as the
first bit of a random string (namely, a probability of 1/2). What’s the
probability that a random bit XORed with the second bit is 0? Right, 1/2
again. The same argument can be iterated over bit strings of any length.
The ciphertext C thus looks random to an attacker that doesn’t know K,
so it’s literally impossible to learn anything about P given C, even for an
attacker with unlimited time and power. In other words, knowing the
ciphertext gives no information whatsoever about the plaintext except its

length—pretty much the definition of a secure cipher.

For example, if a ciphertext is 128 bits long (meaning the plaintext is
128 bits as well), there are 21?% possible ciphertexts; therefore, there
should be 21?8 possible plaintexts from the attacker’s point of view. But if
there are fewer than 21?8 possible keys, the attacker can rule out some
plaintexts. If the key is only 64 bits, for example, the attacker can
determine the 2% possible plaintexts and rule out the overwhelming
majority of 128-bit strings. The attacker wouldn’t learn what the
plaintext is, but they would learn what the plaintext is not, which makes

the encryption’s secrecy imperfect.

As you can see, you must have a key as long as the plaintext to achieve
perfect security, but this quickly becomes impractical for real-world use.
Next, I'll discuss the approaches taken in modern-day encryption to
achieve the best security that’s both possible and practical.

()
PROBABILITY IN CRYPTOGRAPHY

A probability is a number that expresses the
likelihood, or chance, of some event happening. It’s
expressed as a number between 0 and 1, where 0
means “never” and 1 means “always.” The higher
the probability, the greater the chance. You’ll find
many explanations of probability, usually in terms of
white balls and red balls in a bag and the probability
of picking a ball of either color.

Cryptography often uses probabilities to measure
an attack’s chances of success, by 1) counting the
number of successful events (for example, the event
“find the one correct secret key”) and 2) counting
the total number of possible events (for example, the
total number of keys is 2” if we deal with z-bit keys).
In this example, the probability that a randomly
chosen key is the correct one is 1/2”; or the count of
successful events (1 secret key) and the count of
possible events (2” possible keys). The number 1/2”

is negligibly small for common key lengths such as
128 and 256.

The probability of an event not happening is 1 — p,
if the event’s probability is p. The probability of
getting a wrong key in our previous example is
therefore 1 — 1/2”, a number very close to 1,
meaning almost certainty.

_ J

Encryption Security

You've seen that classical ciphers aren’t secure and that a perfectly secure
cipher like the one-time pad is impractical. We’ll thus have to give a little
in terms of security if we want secure and usable ciphers. But what does
“secure” really mean, besides the obvious and informal “eavesdroppers
can’t decrypt secure messages”?

Intuitively, a cipher is secure if, even given a large number of plaintext—
ciphertext pairs, nothing can be learned about the cipher’s behavior when
applied to other plaintexts or ciphertexts. This opens up new questions:

e How does an attacker come by these pairs? How large is a “large
number”? This is all defined by artack models, assumptions about
what the attacker can and cannot do.

e What could be “learned” and what “cipher’s behavior” are we talking
about? This is defined by security goals, descriptions of what is
considered a successful attack.

Attack models and security goals must go together; you can’t claim that
a system is secure without explaining against whom or from what it’s safe.
A security notion is thus the combination of some security goal with some
attack model. We’ll say that a cipher achieves a certain security notion if
any attacker working in a given model can’t achieve the security goal.

Attack Models

An attack model is a set of assumptions about how attackers might

interact with a cipher and what they can and can’t do. The goals of an
attack model are as follows:

e To set requirements for cryptographers who design ciphers, so that
they know what attackers and what kinds of attacks to protect
against.

e To give guidelines to users, about whether a cipher will be safe to
use in their environment.

e To provide clues for cryptanalysts who attempt to break ciphers, so
they know whether a given attack is valid. An attack is only valid if
it’s doable in the model considered.

Attack models don’t need to match reality exactly; they’re an
approximation. As the statistician George E. P. Box put it, “all models are
wrong; the practical question is how wrong do they have to be to not be
useful.” To be useful in cryptography, attack models should at least
encompass what attackers can actually do to attack a cipher. It’s okay and
a good thing if a model overestimates attackers’ capabilities, because it
helps anticipate future attack techniques—only the paranoid
cryptographers survive. A bad model underestimates attackers and
provides false confidence in a cipher by making it seem secure in theory
when it’s not secure in reality.

Kerckhoffs’s Principle

One assumption made in all models is the so-called Kerckhoffs’s principle,
which states that the security of a cipher should rely only on the secrecy
of the key and not on the secrecy of the cipher. This may sound obvious
today, when ciphers and protocols are publicly specified and used by
everyone. But historically, Dutch linguist Auguste Kerckhoffs was
referring to military encryption machines specifically designed for a given
army or division. Quoting from his 1883 essay “La Cryptographie
Militaire,” where he listed six requirements of a military encryption
system: “The system must not require secrecy and can be stolen by the
enemy without causing trouble.”

Black-Box Models

Let’s now consider some useful attack models expressed in terms of what
the attacker can observe and what queries they can make to the cipher. A
query for our purposes is the operation that sends an input value to some
function and gets the output in return, without exposing the details of
that function.

An encryption query, for example, takes a plaintext and returns a
corresponding ciphertext, without revealing the secret key.

We call these models black-box models, because the attacker only sees
what goes in and out of the cipher. For example, some smart card chips
securely protect a cipher’s internals as well as its keys, yet you're allowed
to connect to the chip and ask it to decrypt any ciphertext. The attacker
would then receive the corresponding plaintext, which may help them
determine the key. That’s a real example where decryption queries are
possible.

There are several different black-box attack models. Here, I list them
in order from weakest to strongest, describing attackers’ capabilities for
each model:

o Ciphertext-only attackers (COA) observe ciphertexts but don’t know
the associated plaintexts, and don’t know how the plaintexts were
selected. Attackers in the COA model are passive and can’t perform
encryption or decryption queries.

o Known-plaintext attackers (KPA) observe ciphertexts and do know the
associated plaintexts. Attackers in the KPA model thus get a list of
plaintext—ciphertext pairs, where plaintexts are assumed to be
randomly selected. Again, KPA is a passive attacker model.

o Chosen-plaintext attackers (CPA) can perform encryption queries for
plaintexts of their choice and observe the resulting ciphertexts. This
model captures situations where attackers can choose all or part of
the plaintexts that are encrypted and then get to see the ciphertexts.
Unlike COA or KPA, which are passive models, CPA are active
attackers, because they influence the encryption processes rather

than passively eavesdropping.

o Chosen-ciphertext attackers (CCA) can both encrypt and decrypt; that
is, they get to perform encryption queries and decryption queries.
The CCA model may sound ludicrous at first—if you can decrypt,
what else do you need?—but like the CPA model, it aims to
represent situations where attackers can have some influence on the
ciphertext and later get access to the plaintext. Moreover, decrypting
something is not always enough to break a system. For example,
some video-protection devices allow attackers to perform encryption
queries and decryption queries using the device’s chip, but in that
context attackers are interested in the key in order to redistribute it;
in this case, being able to decrypt “for free” isn’t sufficient to break
the system.

In the preceding models, ciphertexts that are observed as well as
queried don’t come for free. Each ciphertext comes from the
computation of the encryption function. This means that generating 2”
plaintext—ciphertext pairs through encryption queries takes about as much
computation as trying 2” keys, for example. The cost of queries should be
taken into account when you’re computing the cost of an attack.

Gray-Box Models

In a gray-box model, the attacker has access to a cipher’s implementation.
This makes gray-box models more realistic than black-box models for
applications such as smart cards, embedded systems, and virtualized
systems, to which attackers often have physical access and can thus
tamper with the algorithms’ internals. By the same token, gray-box
models are more difficult to define than black-box ones because they
depend on physical, analog properties rather than just on an algorithm’s
input and outputs, and crypto theory will often fail to abstract the
complexity of the real world.

Side-channel attacks are a family of attacks within gray-box models. A

side channel is a source of information that depends on the
implementation of the cipher, be it in software or hardware. Side-channel

attackers observe or measure analog characteristics of a cipher’s
implementation but don’t alter its integrity; they are noninvasive. For pure
software implementations, typical side channels are the execution time
and the behavior of the system that surrounds the cipher, such as error
messages, return values, branches, and so on. In the case of
implementations on smart cards, for example, typical side-channel
attackers measure power consumption, electromagnetic emanations, or
acoustic noise.

Invasive attacks are a family of attacks on cipher implementations that
are more powerful than side-channel attacks, and more expensive because
they require sophisticated equipment. You can run basic side-channel
attacks with a standard PC and an off-the-shelf oscilloscope, but invasive
attacks require tools such as a high-resolution microscopes and a
chemical lab. Invasive attacks thus consist of a whole set of techniques
and procedures, from using nitric acid to remove a chip’s packaging to
microscopic imagery acquisition, partial reverse engineering, and possible
modification of the chip’s behavior with something like laser fault
injection.

Security Goals

I've informally defined the goal of security as “nothing can be learned
about the cipher’s behavior.” To turn this idea into a rigorous
mathematical definition, cryptographers define two main security goals
that correspond to different ideas of what it means to learn something
about a cipher’s behavior:

Indistinguishability (IND) Ciphertexts should be indistinguishable
from random strings. This is usually illustrated with this hypothetical
game: if an attacker picks two plaintexts and then receives a ciphertext
of one of the two (chosen at random), they shouldn’t be able to tell
which plaintext was encrypted, even by performing encryption queries
with the two plaintexts (and decryption queries, if the model is CCA

rather than CPA).
Non-malleability (NM) Given a ciphertext C; = E(K, P,), it should be

impossible to create another ciphertext, C,, whose corresponding
plaintext, P,, is related to P; in a meaningful way (for example, to
create a P, thatis equal to P; @ 1 or to P; ® X for some known value X).
Surprisingly, the one-time pad is malleable: given a ciphertext C; = P,
® K, you can define C, = C| @ 1, which is a valid ciphertext of P, = P; @
1 under the same key K. Oops, so much for our perfect cipher.

Next, I'll discuss these security goals in the context of different attack
models.

Security Notions

Security goals are only useful when combined with an attack model. The
convention is to write a security notion as GOAL-MODEL. For example,
IND-CPA denotes indistinguishability against chosen-plaintext attackers,
NM-CCA denotes nonmalleability against chosen-ciphertext attackers,
and so on. Let’s start with the security goals for an attacker.

Semantic Security and Randomized Encryption: IND-CPA

The most important security notion is IND-CPA, also called semantic
security. It captures the intuition that ciphertexts shouldn’t leak any
information about plaintexts as long as the key is secret. To achieve IND-
CPA security, encryption must return different ciphertexts if called twice
on the same plaintext; otherwise, an attacker could identify duplicate
plaintexts from their ciphertexts, contradicting the definition that
ciphertexts shouldn’t reveal any information.

One way to achieve IND-CPA security is to use randomized encryption.
As the name suggests, it randomizes the encryption process and returns
different ciphertexts when the same plaintext is encrypted twice.
Encryption can then be expressed as C = E(K, R, P), where R is fresh
random bits. Decryption remains deterministic, however, because given
E(K, R, P), you should always get P, regardless of the value of R.

What if encryption isn’t randomized? In the IND game introduced in
“Security Goals” on page 12, the attacker picks two plaintexts, P; and P,,

and receives a ciphertext of one of the two, but doesn’t know which
plaintext the ciphertext corresponds to. That is, they get C; = E(K, P,) and

have to guess whether 7 is 1 or 2. In the CPA model, the attacker can
perform encryption queries to determine both C| = E(K, P;) and C; =
E(K, P,). If encryption isn’t randomized, it suffices to see if C; is equal to
C, or to C, in order to determine which plaintext was encrypted and

thereby win the IND game. Therefore, randomization is key to the IND-
CPA notion.

NOTE

With randomized encryption, ciphertexts must be slightly longer than
plaintexts in order to allow for more than one possible ciphertext per
plaintext. For example, if there are 26% possible ciphertexts per plaintext,
ciphertexts must be at least 64 bits longer than plaintexts.

Achieving Semantically Secure Encryption

One of the simplest constructions of a semantically secure cipher uses a
deterministic random bit generator (DRBG), an algorithm that returns
random-looking bits given some secret value:

E(K, R, P) = (DRBG(K R) @ P, R)

Here, R is a string randomly chosen for each new encryption and given
to a DRBG along with the key (K || R denotes the string consisting of K
followed by R). This approach is reminiscent of the one-time pad: instead
of picking a random key of the same length as the message, we leverage a
random bit generator to get a random-looking string.

The proof that this cipher is IND-CPA secure is simple, if we assume
that the DRBG produces random bits. The proof works ad absurdum: if
you can distinguish ciphertexts from random strings, which means that
you can distinguish DRBG(K || R) ® P from random, then this means
that you can distinguish DRBG(K || R) from random. Remember that

the CPA model lets you get ciphertexts for chosen values of P, so you can
XOR P to DRBG(K, R) @ P and get DRBG(K, R). But now we have a
contradiction, because we started by assuming that DRBG(K, R) can’t be
distinguished from random, producing random strings. So we conclude
that ciphertexts can’t be distinguished from random strings, and therefore
that the cipher is secure.

NOTE

As an exercise, try to determine what other security notions ave satisfied by
the above cipher E(K, R, P) = (DRBG(K || R) @ P, R). Is it NM-CPA?
IND-CCA? You’ll find the answers in the next section.

Comparing Security Notions

You've learned that attack models such as CPA and CCA are combined
with security goals such as NM and IND to build the security notions
NM-CPA, NM-CCA, IND-CPA, and IND-CCA. How are these
notions related? Can we prove that satisfying notion X implies satisfying
notion Y?

Some relations are obvious: IND-CCA implies IND-CPA, and NM-
CCA implies NM-CPA, because anything a CPA attacker can do, a CCA
attacker can do as well. That is, if you can’t break a cipher by performing
chosen-ciphertext and chosen-plaintext queries, you can’t break it by
performing chosen-plaintext queries only.

A less obvious relation is that IND-CPA does not imply NM-CPA. To
understand this, observe that the previous IND-CPA construction
(DRBG(K, R) @ P, R) is not NM-CPA: given a ciphertext (X, R), you can
create the ciphertext (X @ 1, R), which is a valid ciphertext of P @ 1, thus
contradicting the notion of non-malleability.

But the opposite relation does hold: NM-CPA implies IND-CPA. The
intuition is that IND-CPA encryption is like putting items in a bag: you
don’t get to see them, but you can rearrange their positions in the bag by
shaking it up and down. NM-CPA is more like a safe: once inside, you

can’t interact with what you put in there. But this analogy doesn’t work
for IND-CCA and NM-CCA, which are equivalent notions that each
imply the presence of the other. I'll spare you the proof, which is pretty
technical.

(" h
TWO TYPES OF ENCRYPTION APPLICATIONS

There are two main types of encryption
applications. In-transit encryption protects data sent
from one machine to another: data is encrypted
before being sent and decrypted after being
received, as in encrypted connections to e-
commerce websites. At-rest encryption protects data
stored on an information system. Data is encrypted
before being written to memory and decrypted
before being read. Examples include disk encryption
systems on laptops as well as virtual machine
encryption for cloud virtual instances. The security
notions we’ve seen apply to both types of
applications, but the right notion to consider may

depend on the application.
\ y,

Asymmetric Encryption

So far we’ve considered only symmetric encryption, where two parties
share a key. In asymmetric encryption, there are two keys: one to encrypt
and another to decrypt. The encryption key is called a public key and is
generally considered publicly available to anyone who wants to send you
encrypted messages. The decryption key, however, must remain secret
and is called a private key.

The public key can be computed from the private key, but obviously
the private key can’t be computed from the public key. In other words,
it’s easy to compute in one direction, but not in the other—and that’s the
point of public-key cryptography, whose functions are easy to compute in
one direction but practically impossible to invert.

The attack models and security goals for asymmetric encryption are
about the same as for symmetric encryption, except that because the
encryption key is public, any attacker can make encryption queries by
using the public key to encrypt. The default model for asymmetric
encryption is therefore the chosen-plaintext attacker (CPA).

Symmetric and asymmetric encryption are the two main types of
encryption, and they are wusually combined to build secure
communication systems. They’re also used to form the basis of more
sophisticated schemes, as you’ll see next.

When Ciphers Do More Than Encryption

Basic encryption turns plaintexts into ciphertexts and ciphertexts into
plaintexts, with no requirements other than security. However, some
applications often need more than that, be it extra security features or
extra functionalities. That’s why cryptographers created variants of
symmetric and asymmetric encryption. Some are well-understood,
efficient, and widely deployed, while others are experimental, hardly used,
and offer poor performance.

Authenticated Encryption

Authenticated encryption (AE) is a type of symmetric encryption that
returns an authentication tag in addition to a ciphertext. Figure 1-4 shows
authenticated encryption sets AE(K, P) = (C, T), where the authentication
tag T is a short string that’s impossible to guess without the key.
Decryption takes K, C, and T and returns the plaintext P only if it verifies
that T is a valid tag for that plaintext—ciphertext pair; otherwise, it aborts
and returns some error.

l

P—m{ AE

— C
— |

Figure 1-4: Authenticated encryption

The tag ensures the integrity of the message and serves as evidence that
the ciphertext received is identical to the one sent in the first place by a
legitimate party that knows the key K. When K is shared with only one
other party, the tag also guarantees that the message was sent by that
party; that is, it implicitly authenticates the expected sender as the actual
creator of the message.

I use “creator” rather than “sender” here because an eavesdropper can record
some (C, 'T') pairs sent by party A to party B and then send them again to B,
pretending to be A. This is called a replay attack, and it can be prevented, for
example, by including a counter number in the message. When a message is
decrypted, its counter 1 is increased by one: 1 + 1. In this way, one could check
the counter to see if a message bas been sent twice, indicating that an attacker
is attempting a veplay attack by resending the message. This also enables the
detection of lost messages.

Authenticated encryption with associated data (AEAD) is an extension of
authenticated encryption that takes some cleartext and unencrypted data
and uses it to generate the authentication tag AEAD(K, P, A) = (C, T). A
typical application of AEAD is used to protect protocols’ datagrams with
a cleartext header and an encrypted payload. In such cases, at least some
header data has to remain in the clear; for example, destination addresses
need to be clear in order to route network packets.

For more on authenticated encryption, jump to Chapter 8.

Format-Preserving Encryption

A basic cipher takes bits and returns bits; it doesn’t care whether bits
represents text, an image, or a PDF document. The ciphertext may in
turn be encoded as raw bytes, hexadecimal characters, base64, and other
formats. But what if you need the ciphertext to have the same format as
the plaintext, as is sometimes required by database systems that can only
record data in a prescribed format?

Format-preserving encryption (FPE) solves this problem. It can create
ciphertexts that have the same format as the plaintext. For example, FPE
can encrypt IP addresses to IP addresses (as shown in Figure 1-5), ZIP
codes to ZIP codes, credit card numbers to credit card numbers with a
valid checksum, and so on.

K

'

127.0.0.1—»=| FPE |—»212.91.12.2

Figure 1-5: Format-preserving encryption for IP addresses

Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is the holy grail to cryptographers: it
enables its users to replace a ciphertext, C = E(K, P), with another
ciphertext, C" = E(K, F(P)), for F(P) can be any function of P, and without
ever decrypting the initial ciphertext C. For example, P can be a text
document, and F can be the modification of part of the text. You can
imagine a cloud application that stores your encrypted data, but where
the cloud provider doesn’t know what the data is or the type of changes
made when you change that data. Sounds amazing, doesn’t it?

But there’s a flip side: this type of encryption is slow—so slow that even
the most basic operation would take an unacceptably long time. The first
FHE scheme was created in 2009, and since then more efficient variants
appeared, but it remains unclear whether FHE will ever be fast enough to

be useful.
Searchable Encryption

Searchable encryption enables searching over an encrypted database without
leaking the searched terms by encrypting the search query itself. Like
fully homomorphic encryption, searchable encryption could enhance the
privacy of many cloud-based applications by hiding your searches from
your cloud provider. Some commercial solutions claim to offer searchable
encryption, though they’re mostly based on standard cryptography with a
few tricks to enable partial searchability. As of this writing, however,
searchable encryption remains experimental within the research
community.

Tweakable Encryption

Tweakable encryption (TE) is similar to basic encryption, except for an
additional parameter called the tweak, which aims to simulate different
versions of a cipher (see Figure 1-6). The tweak might be a unique per-
customer value to ensure that a customer’s cipher can’t be cloned by
other parties using the same product, but the main application of TE is
disk encryption. However, 'TE is not bound to a single application and is a
lower-level type of encryption used to build other schemes, such as
authentication encryption modes.

K

;

P—si TE [—=C

!

T
Figure 1-6: Tweakable encryption

In disk encryption, TE encrypts the content of storage devices such as
hard drives or solid-state drives. (Randomized encryption can’t be used
because it increases the size of the data, which is unacceptable for files on
storage media.) To make encryption unpredictable, TE uses a tweak
value that depends on the position of the data encrypted, which is usually
a sector number or a block index.

How Things Can Go Wrong

Encryption algorithms or implementations thereof can fail to protect
confidentiality in many ways. This can be due to a failure to match the
security requirements (such as “be IND-CPA secure”) or to set
requirements matching reality (if you target only IND-CPA security
when attackers can actually perform chosen-ciphertext queries). Alas,
many engineers don’t even think about cryptographic security
requirements and just want to be “secure” without understanding what
that actually means. That’s usually a recipe for disaster. Let’s look at two
examples.

Weak Cipher

Our first example concerns ciphers that can be attacked wusing
cryptanalysis techniques, as occurred with the 2G mobile communication
standard. Encryption in 2G mobile phones used a cipher called A5/1 that
turned out to be weaker than expected, enabling the interception of calls
by anyone with the right skills and tools. Telecommunication operators
had to find workarounds to prevent the attack.

The 2G standard also defined A572, a cipher for areas other than the EU
and US. A5/2 was purposefully weaker to prevemt the use of strong
encryption everywhere.

That said, attacking A5/1 isn’t trivial, and it took more than 10 years
for researchers to come up with an effective cryptanalysis method.
Furthermore, the attack is a time-memory trade-off (I'MTO), a type of
method that first runs computations for days or weeks in order to build
large look-up tables, which are subsequently used for the actual attack.
For A5/1, the precomputed tables are more than 1'TB. Later standards
for mobile encryption, such as 3G and L'TE, specify stronger ciphers, but
that doesn’t mean that their encryption won’t be compromised; rather, it
simply means that the encryption won’t be compromised by breaking the

symmetric cipher that’s part of the system.

Wrong Model

The next example concerns an invalid attack model that overlooked some
side channels.

Many communication protocols that use encryption ensure that they
use ciphers considered secure in the CPA or CCA model. However, some
attacks don’t require encryption queries, as in the CPA model, nor do
they require decryption queries, as in the CCA model. They simply need
validity queries to tell whether a ciphertext is valid, and these queries are
usually sent to the system responsible for decrypting ciphertexts. Padding
oracle attacks are an example of such attacks, wherein an attacker learns
whether a ciphertext conforms to the required format.

Specifically, in the case of padding oracle attacks, a ciphertext is valid
only if its plaintext has the proper padding, a sequence of bytes appended
to the plaintext to simplify encryption. Decryption fails if the padding is
incorrect, and attackers can often detect decryption failures and attempt
to exploit them. For example, the presence of the Java exception
javax.crypto.BadPaddingException would indicate that an incorrect padding
was observed.

In 2010, researchers found padding oracle attacks in several web
application servers. The validity queries consisted of sending a ciphertext
to some system and observing whether it threw an error. Thanks to these
queries, they could decrypt otherwise secure ciphertexts without knowing
the key.

Cryptographers often overlook attacks like padding oracle attacks
because they usually depend on an application’s behavior and on how
users can interact with the application. But if you don’t anticipate such
attacks and fail to include them in your model when designing and
deploying cryptography, you may have some nasty surprises.

Further Reading

We discuss encryption and its various forms in more detail throughout

this book, especially how modern, secure ciphers work. Still, we can’t
cover everything, and many fascinating topics won’t be discussed. For
example, to learn the theoretical foundations of encryption and gain a
deeper understanding of the notion of indistinguishability (IND), you
should read the 1982 paper that introduced the idea of semantic security,
“Probabilistic Encryption and How to Play Mental Poker Keeping Secret
All Partial Information” by Goldwasser and Micali. If you’re interested in
physical attacks and cryptographic hardware, the proceedings of the
CHES conference are the main reference.

There are also many more types of encryption than those presented in
this chapter, including attribute-based encryption, broadcast encryption,
functional encryption, identity-based encryption, message-locked
encryption, and proxy re-encryption, to cite but a few. For the latest
research on those topics, you should check https://eprint.iacr.org/, an
electronic archive of cryptography research papers.

https://eprint.iacr.org/

2
RANDOMNESS

Randomness is found everywhere in cryptography: in the generation of
secret keys, in encryption schemes, and even in the attacks on
cryptosystems. Without randomness, cryptography would be impossible
because all operations would become predictable, and therefore insecure.

This chapter introduces you to the concept of randomness in the
context of cryptography and its applications. We discuss pseudorandom
number generators and how operating systems can produce reliable
randomness, and we conclude with real examples showing how flawed
randomness can impact security.

Random or Non-Random?

You've probably already heard the phrase “random bits,” but strictly
speaking there is no such thing as a series of random bits. What is
random is actually the algorithm or process that produces a series of
random bits; therefore, when we say “random bits,” we actually mean
randomly generated bits.

What do random bits look like? For example, to most people, the 8-bit
string 11010110 is more random than 00000000, although both have the
same chance of being generated (namely, 1/256). The value 11010110
looks more random than 00000000 because it has the signs typical of a
randomly generated value. That is, 11010110 has no obvious pattern.

When we see the string 11010110, our brain registers that it has about
as many zeros (three) as it does ones (five), just like 55 other 8-bit strings

(11111000, 11110100, 11110010, and so on), but only one 8-bit string has
eight zeros. Because the pattern three-zeros-and-five-ones is more likely
to occur than the pattern eight-zeros, we identify 11010110 as random
and 00000000 as non-random, and if a program produces the bits
11010110, you may think that it’s random, even if it’s not. Conversely, if
a randomized program produces 00000000, you’ll probably doubt that it’s
random.

This example illustrates two types of errors people often make when
identifying randomness:

Mistaking non-randomness for randomness Thinking that an
object was randomly generated simply because it /ooks random.

Mistaking randomness for non-randomness Thinking that patterns
appearing by chance are there for a reason other than chance.

The distinction between random-looking and actually random is
crucial. Indeed, in crypto, non-randomness is often synonymous with
insecurity.

Randomness as a Probability Distribution

Any randomized process is characterized by a probability distribution,
which gives all there is to know about the randomness of the process. A
probability distribution, or simply distribution, lists the outcomes of a
randomized process where each outcome is assigned a probability.

A probability measures the likelihood of an event occurring. It’s
expressed as a real number between 0 and 1 where a probability 0 means
impossible and a probability of 1 means certain. For example, when
tossing a two-sided coin, each side has a probability of landing face up of
172, and we usually assume that landing on the edge of the coin has
probability zero.

A probability distribution must include all possible outcomes, such that
the sum of all probabilities is 1. Specifically, if there are N possible events,
there are N probabilities py, py, . . ., pyWith p; + p + . . . + py = 1. In the

case of the coin toss, the distribution is 1/2 for heads and 1/2 for tails.

The sum of both probabilities is equal to 1/2 + 1/2 = 1, because the coin
will fall on one of its two faces.

A uniform distribution occurs when all probabilities in the distribution
are equal, meaning that all outcomes are equally likely to occur. If there
are N events, then each event has probability 1/N. For example, if a 128-
bit key is picked uniformly at random—that is, according to a uniform
distribution—then each of the 2!’ possible keys should have a
probability of 1/2128,

In contrast, when a distribution is non-uniform, probabilities aren’t all
equal. A coin toss with a non-uniform distribution is said to be biased,
and may yield heads with probability 1/4 and tails with probability 3/4,
for example.

Entropy: A Measure of Uncertainty

Entropy is the measure of uncertainty, or disorder in a system. You might
think of entropy as the amount of surprise found in the result of a
randomized process: the higher the entropy, the less the certainty found
in the result.

We can compute the entropy of a probability distribution. If your
distribution consists of probabilities py, p,, . . ., pn» then its entropy is the

negative sum of all probabilities multiplied by their logarithm, as shown
in this expression:

—py * log(py) — p, % log(p,) — ... py * log(py)

Here the function /log is the binary logarithm, or logarithm in base two.
Unlike the natural logarithm, the binary logarithm expresses the
information in bits and yields integer values when probabilities are
powers of two. For example, log(1/2) = -1, log(1/4) = -2, and more
generally log(1/2) = —n. (That’s why we actually take the negative sum, in

order to end up with a positive number.) Random 128-bit keys produced
using a uniform distribution therefore have the following entropy:

2128 x (27128 x log(271%8)) = ~log(2"17%) = 128 bits

If you replace 128 by any integer z you will find that the entropy of a
uniformly distributed #-bit string will be # bits.

Entropy is maximized when the distribution is uniform because a
uniform distribution maximizes uncertainty: no outcome is more likely
than the others. Therefore, n-bit values can’t have more than #z bits of
entropy.

By the same token, when the distribution is not uniform, entropy is
lower. Consider the coin toss example. The entropy of a fair toss is the
following:

~(1/2) x log (1/2) - (1/2) x log (1/2) = 1/2 + 1/2 = 1 bit

What if one side of the coin has a higher probability of landing face up
than the other? Say heads has a probability of 1/4 and tails 3/4 (remember
that the sum of all probabilities should be 1).

The entropy of such a biased toss is this:

~(3/4) x log(3/4) — (1/4) x log(1/4) ~ —(3/4) x (~0.415) — (1/4) x (~2) ~ 0.81
bit

The fact that 0.81 is less than the 1-bit entropy of a fair toss tells us
that the more biased the coin, the less uniform the distribution and the
lower the entropy. Taking this example further, if heads has a probability
of 1/10, the entropy is 0.469; if the probability drops to 1/100, the
entropy drops to 0.081.

NOTE

Entropy can also be viewed as a measure of information. For example, the
result of a fair coin toss gives you exactly one bit of information—hbeads or
tails—and you’re unable to predict the result of the toss in advance. In the
case of the unfair coin toss, you know in advance that tails is more probable,
so you can usually predict the outcome of the toss. The result of the coin toss

gives you the information needed to predict the result with certainty.

Random Number Generators (RNGs) and Pseudorandom
Number Generators (PRNGs)

Cryptosystems need randomness to be secure and therefore need a
component from which to get their randomness. The job of this
component is to return random bits when requested to do so. How is this
randomness generation done? You’ll need two things:

e A source of uncertainty, or source of entropy, provided by random
number generators (RNGs).

e A cryptographic algorithm to produce high-quality random bits from
the source of entropy. This is found in pseudorandom number
generators (PRINGs).

Using RNGs and PRNGs is the key to making cryptography practical
and secure. Let’s briefly look at how RNGs work before exploring
PRNGs in depth.

Randomness comes from the environment, which is analog, chaotic,
uncertain, and hence unpredictable. Randomness can’t be generated by
computer-based algorithms alone. In cryptography, randomness usually
comes from random number generators (RNGs), which are software or
hardware components that leverage entropy in the analog world to
produce unpredictable bits in a digital system. For example, an RNG
might directly sample bits from measurements of temperature, acoustic
noise, air turbulence, or electrical static. Unfortunately, such analog
entropy sources aren’t always available, and their entropy is often difficult
to estimate.

RNGs can also harvest the entropy in a running operating system by
drawing from attached sensors, I/O devices, network or disk activity,
system logs, running processes, and user activities such as key presses and
mouse movement. Such system- and human-generated activities can be