
Advanced Data Types

C# Programming

Gloscol 2023

C# Programming 1

Arrays and Collections

There are limitations with arrays ArrayLists

Arrays are generally Fixed Length
Need to be managed

Manual resizing

Manual re-arrangement

Gloscol 2023

C# Programming 2

ArrayList

.NET Framework 1.0 shipped with ArrayList

Any type can be added to an ArrayList
All types inherit from System.Object

But ...
No type safety

Boxing and Unboxing of Value Types hits performance

ArrayList names = new ArrayList() {"Fred", "Mina", "Bob", 99};

Can you spot the problem?

Gloscol 2023

C# Programming 3

Generics

Allow Data Types to be defined

Without pre-defining the types they use or work with

Containing generic algorithms that apply to any type

Generics can apply to

Data Types

Functions

Interfaces

Delegates

Gloscol 2023

C# Programming 4

Framework libraries Generics

Many classic generic types are part of System.Collections.Generic

List<T>

Dictionary<TKey, TValue>

Stack<T>

Gloscol 2023

C# Programming 5

Generic List

Generics use one or more type placeholders eg T

List<string> names = new List<string> {
 "Fred", "Amy", "Mina", "Tam", "Baz"
};

Specifies a List of strings

Populated with names

names.Add("Dhami"); // Type safe! Add expects a string argument

Gloscol 2023

C# Programming 6

Generics are Type Safe

List<string> names = new List<string> {
 "Fred", "Amy", "Mina", "Tam", "Baz", 99
}; // Compile Error!! - Can't Add int to String List

Specifies a List of strings

Populated with names

names.Add(99); // Compile Error!! - Invalid Argument

Gloscol 2023

C# Programming 7

Dictionary

Dictionary is a hash table of Key-Value pairs

Elements not stored using linear indexes

Hashes are calculated based on keys

Dictionary<string, Car> cars = new Dictionary<string, Car>();
cars.Add("ABC123", new Car("Audi", "R8"));

Elements can be retrieved by key

> Car myCar = cars["ABC123"];
> myCar.Make
'Audi'

Gloscol 2023

C# Programming 8

Static Data

Most Data declared in a type is instance data

A type instance must be created first

Each instance holds its own instance data

Data can also be defined as static

static data is shared among all instances of the type

Accessible from the type name

Gloscol 2023

C# Programming 9

Static Data - Example

Below there are two variables defined

nextReg - static

registration - instance

class Car {
 public static int nextReg;
 public string registration;
 public Car() {
 registration = $"ABC{++nextReg:000}";
 }
}

Gloscol 2023

C# Programming 10

Accessing Instance Data

To access instance variables

Create an instance of a type

Access the public fields of the instance of the type

> Car myCar = new Car();
> myCar.registration
'ABC001'

We had to create an instance of Car first!

Gloscol 2023

C# Programming 11

Accessing Static Data

To access static variables

Just access the public fields of the of the type itself

> Car.nextReg;
1

We just used the name of the class

No instance of Car had to be created!

Gloscol 2023

C# Programming 12

Tuples

Tuples group data items together

Simple, Lightweight

Easy To Use

Read Only

Define

Data and Field Names

Not Methods!

Gloscol 2023

C# Programming 13

Example - Tuple

Default Tuples

(string, int, string) info = ("Fred", 21, "Star Wars);
Console.WriteLine($"{info.Item1} is {info.Item2} and has a favourite movie called {info.Item3}");

Named Field Tuples

(string Name, int Age, string Movie) info = ("Fred", 21, "Star Wars);
Console.WriteLine($"{info.Name} is {info.Age} and has a favourite movie called {info.Movie}");

Gloscol 2023

C# Programming 14

Enumerated Types

C# Programming Concepts

Gloscol 2023

C# Programming 15

Classifications via lists

/*
 Car Types
 1 : Road Car
 2 : Racing Car
 3 : Rally Car
 4 : F1 Car
*/

int carType = 3;

Why might this approach be a problem?

Gloscol 2023

C# Programming 16

Enumerations

Enumerated Types Define the allowed values

enum CarType
{
 RoadCar,
 RacingCar,
 RallyCar,
 F1Car
}

Enum defines a new data type

CarType carType = CarType.RoadCar;

Gloscol 2023

C# Programming 17

Enums are stored as integers

Each enum value is implicitly assigned an integer value starting from

enum values can be explicitly assigned

enum CarType {
 RoadCar = 0,
 RacingCar = 1,
 RallyCar = 2,
 F1Car = 3
}

Gloscol 2023

C# Programming 18

Enums can be cast to and from integers

enum to int

> CarType carType = CarType.RoadCar;
> int c = (int) carType;
> c
0

int to enum

> int c = (int) 3;
> CarType carType = (CarType) c;
> carType
F1Car

Gloscol 2023

C# Programming 19

Converting enums ToString()

Converting ToString returns the name of enum value

> CarType carType = CarType.RoadCar;
> carType.ToString()
RoadCar

To return a list of value names or number

string[] carTypeNames = Enum.GetNames(typeof(CarType)); // Names
int[] carTypeNames = Enum.GetValues(typeof(CarType)); // Numbers

Gloscol 2023

C# Programming 20

Parsing enums from Strings

An string literal can be parsed into an enum using Enum.Parse

string cType = "F1Car";
CarType carType = (CarType) Enum.Parse(typeof(CarType), cType)

Must cast to enum type - above we cast to (CarType)

Gloscol 2023

C# Programming 21

Simplifying Enums

Enums can be declared as static

Allows user to use enum members with prefixing with enum type name

using static CarType; // Place with other using statements
...
// CarType carType = CarType.RoadCar;
CarType carType = RoadCar; // No need to prefix with CarType !
Console.WriteLine(carType.ToString());
RoadCar

Gloscol 2023

C# Programming 22

