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Arrays and Collections

There are limitations with arrays ArrayLists

Arrays are generally Fixed Length
Need to be managed

Manual resizing

Manual re-arrangement
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ArrayList

.NET Framework 1.0 shipped with ArrayList

Any type can be added to an ArrayList
All types inherit from System.Object

But ...
No type safety

Boxing and Unboxing of Value Types hits performance

ArrayList names = new ArrayList() {"Fred", "Mina", "Bob", 99};

Can you spot the problem?
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Generics

Allow Data Types to be defined

Without pre-defining the types they use or work with

Containing generic algorithms that apply to any type

Generics can apply to

Data Types

Functions

Interfaces

Delegates
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Framework libraries Generics

Many classic generic types are part of System.Collections.Generic

List<T>

Dictionary<TKey, TValue>

Stack<T>
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Generic List

Generics use one or more type placeholders eg T

List<string> names = new List<string> {
    "Fred", "Amy", "Mina", "Tam", "Baz"
};

Specifies a List of strings

Populated with names

names.Add("Dhami"); // Type safe! Add expects a string argument
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Generics are Type Safe

List<string> names = new List<string> {
    "Fred", "Amy", "Mina", "Tam", "Baz", 99
}; // Compile Error!! - Can't Add int to String List

Specifies a List of strings

Populated with names

names.Add(99); // Compile Error!! - Invalid Argument

Gloscol 2023

C# Programming 7



Dictionary

Dictionary is a hash table of Key-Value pairs

Elements not stored using linear indexes

Hashes are calculated based on keys

Dictionary<string, Car> cars = new Dictionary<string, Car>();
cars.Add("ABC123", new Car("Audi", "R8"));

Elements can be retrieved by key

> Car myCar = cars["ABC123"];
> myCar.Make
'Audi'
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Static Data

Most Data declared in a type is instance data

A type instance must be created first

Each instance holds its own instance data

Data can also be defined as static

static data is shared among all instances of the type

Accessible from the type name
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Static Data - Example

Below there are two variables defined

nextReg - static

registration - instance

class Car {
    public static int nextReg;
    public string registration;
    public Car() {
        registration = $"ABC{++nextReg:000}";
    }
}
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Accessing Instance Data

To access instance variables

Create an instance of a type

Access the public fields of the instance of the type

> Car myCar = new Car();
> myCar.registration
'ABC001'

We had to create an instance of Car first!
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Accessing Static Data

To access static variables

Just access the public fields of the of the type itself

> Car.nextReg;
1

We just used the name of the class

No instance of Car had to be created!
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Tuples

Tuples group data items together

Simple, Lightweight

Easy To Use

Read Only

Define

Data and Field Names

Not Methods!
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Example - Tuple

Default Tuples

(string, int, string) info = ("Fred", 21, "Star Wars);
Console.WriteLine($"{info.Item1} is {info.Item2} and has a favourite movie called {info.Item3}");

Named Field Tuples

(string Name, int Age, string Movie) info = ("Fred", 21, "Star Wars);
Console.WriteLine($"{info.Name} is {info.Age} and has a favourite movie called {info.Movie}");
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Enumerated Types

C# Programming Concepts
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Classifications via lists

/* 
    Car Types
    1 : Road Car
    2 : Racing Car
    3 : Rally Car
    4 : F1 Car
*/

int carType = 3; 

Why might this approach be a problem?
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Enumerations

Enumerated Types Define the allowed values

enum CarType
{
    RoadCar,
    RacingCar,
    RallyCar,
    F1Car
}

Enum defines a new data type

CarType carType = CarType.RoadCar;
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Enums are stored as integers

Each enum value is implicitly assigned an integer value starting from

enum values can be explicitly assigned

enum CarType {
    RoadCar = 0,
    RacingCar = 1,
    RallyCar = 2,
    F1Car = 3
}
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Enums can be cast to and from integers

enum to int

> CarType carType = CarType.RoadCar;
> int c = (int) carType;
> c
0

int to enum

> int c = (int) 3;
> CarType carType = (CarType) c;
> carType
F1Car
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Converting enums ToString()

Converting ToString returns the name of enum value

> CarType carType = CarType.RoadCar;
> carType.ToString()
RoadCar

To return a list of value names or number

string[] carTypeNames = Enum.GetNames(typeof(CarType)); // Names
int[] carTypeNames = Enum.GetValues(typeof(CarType)); // Numbers

Gloscol 2023

C# Programming 20



Parsing enums from Strings

An string literal can be parsed into an enum using Enum.Parse

string cType = "F1Car";
CarType carType =  (CarType) Enum.Parse(typeof(CarType), cType)

Must cast to enum type - above we cast to (CarType)
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Simplifying Enums

Enums can be declared as static

Allows user to use enum members with prefixing with enum type name

using static CarType; // Place with other using statements
...
// CarType carType = CarType.RoadCar;
CarType carType = RoadCar; //  No need to prefix with CarType !
Console.WriteLine(carType.ToString());
RoadCar
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