Gloscol 2023

LINQ

C# Programming

C# Programming



Gloscol 2023

In this chapter we will learn ...

e How to use Language Integrated Query

C# Programming



Gloscol 2023

LINQ

C# Programming



Whatis LINQ

Language Integrated Query
e Releasein .NET 3.5

Declarative querying of .NET collection/enumerable types

e SQL Like Syntax (read backwards!)
e |f you can foreach through it you can LINQ query it!

e Specify your intent and LINQ does the rest



Gloscol 2023

Comparing Query Languages

SQL LINQ
Query Variable:
Used to
reference
elements in
Collection
FROM order in Order . .
SELECT * FROM Orders Ol T Ol being queried

>
WHERE Total > 1000 WHERE order.Total > 1000

ORDER BY TOTAL

ORDER BY order.TOTAL
SELECT order

C# Programming



Gloscol 2023

Using LINQ

To use LINQ you need to include using System.Ling

using System.Ling;

Now you can use a LINQ extension method against an IEnumerable type

C# Programming



LINQ Syntax

o Define Data Source and a enumeration variable to reference in query
from <variable> in <enumberable object>

o Optional - Define one or more where predicates and/or order by statements

where <predicate>,
order by <variable.property>,

e Define query return element/variable/anonymous type

select <variable>



Gloscol 2023

LINQ Query Example

Simple LINQ Query

¢ Assuming Data

var people = new Person[] {new Person("Fred", 20, 30000), new Person('Mina", 30, 50000)};

e A simple query returning all elements would be

var results = from p in people
select p;

foreach(var person in results){
Console.WriteLine($"{person.Name} is {person.Age}");
¥

C# Programming



Gloscol 2023

Filtering using where

e Assuming Data

var people = new Person[] {new Person("Fred", 20, 30000), new Person('"Mina", 30, 50000)};

e A query returning people whose age > 20 would be

var results = from p in people
where p.age > 20
select p;

foreach(var person in results){
Console.WriteLine($"{person.Name} is {person.Age}");
¥

C# Programming



Gloscol 2023

Ordering using OrderBy

OrderBy and OrderByDescending

e Returns an IOrderedEnumerable<source type>

o Allows you to order based on a sort key you define derived from each element in turn

var people = new Person[] {new Person("Fred", 20, 30000), new Person('"Mina", 30, 50000)};
// Order by the Salary
I0rderedEnumerable<Person> results = people.OrderBy(p => p.Salary);

C# Programming

10



Group By

Groups together Elements in a collection based on a property

Syntax

group <element variable> by <property> into <group variable>

 |dentify unique groups for chosen property and create group object for each
o Assign each Group its Key value from the chosen property

e Collect all elements with the same Key into their respective Group

11



Gloscol 2023

Group By - Example

var employees =
new
new
new
new

b

var groups =

new List<Employee> {

Employee { FirstName="Fred", LastName="Bloggs", Age=21 },
Employee { FirstName="Suzy", LastName="Simm", Age=27 },
Employee { FirstName="Toby", LastName="Thomas", Age=27 },
Employee { FirstName="Greg", LastName="Gregory", Age=21 }

from employee in employees
group employee by employee.Age into newGroup
select newGroup;

foreach(var group in groups) {
Console.WriteLine(group.Key); // Prints distinct age groups 21 and 27

}

C# Programming

12



Gloscol 2023

Getting Started with LINQ - Group Functions

Group Functions allow group calculations across a simple collection:

e Count()
e Sum()
e Max(), Min()

o Average()

> var numbers = new int[] {5, 10 , 20, 35, 40};
> numbers.Sum();

110

> numbers.Average();

22

C# Programming

13



Gloscol 2023

Group Functions - Complex Types

How do we Sum a List of Person objects == More complex

o By Salary ?
e By Age?

// Assuming a Person class with Name, Age and Salary properties
> var people = new Person[] {new Person("Fred", 20, 30000), new Person('Mina", 30, 50000)};

o Use a Lambda expression as a property picker
o Picks which property to Sum for each element in array

> people.Average(p => p.Age);
25

C# Programming

14



Using var with LINQ

It can get difficult to predict what a LINQ query will return

Instead of

I0OrderedEnumerable<Person> results = people.OrderBy(p => p.Salary);

We would more usually write

var results = people.OrderBy(p => p.Salary);

e var allows type inference - Let the compiler do the work!

15



Gloscol 2023

Lambda Syntax - Filtering using Where

var people = new Person[] {new Person("Fred", 20, 30000), new Person('"Mina", 30, 50000)};
var results = people.Where(p => p.Age >= 18);

o Where method allows collection filtering based on a predicate
o the result is IEnumerable<source type>

o Lambda expression is used as a predicate method to filter
o Lambda invoked for each element in collection

o Elementisincluded in result if Lambda returns true

C# Programming

16



Gloscol 2023

LINQ Methods can be combined

Most LINQ calls return the result of the action ... So ...

e LINQ calls can be chained together

var results = people.Where(p.Age >= 18).0rderBy(p => p.Salary)
You can span multiple lines to aid readability

var results = people.Where(p.Age >= 18)
.0rderBy(p => p.Salary)

C# Programming

17



Gloscol 2023

Controlling the returned result - Select

Usually LINQ returns an IEnumerable of the type you are querying

e Querying a List will return IEnumberable<int>

Select allows you to choose what is returned for each result row

var people = new Person[] {new Person("Fred", 20, 30000), new Person('"Mina", 30, 50000)};
IEnumerable<string> names = people.Where(p => p.Age>=18)
.Select (p=>p.Name);

C# Programming

18



Gloscol 2023

Returning other results from a Select

Anonymous Types can be generated without a class or a struct as a template
// Creates a brand new anonymous type
var person = new {name="Fred", age =21};

We can use anonymous types in Select statements

var people = new Person[] {new Person("Fred", 20, 30000), new Person("Mina", 30, 50000)};
// Must use var!
var names = people.Where(p => p.Age>=18 )

.Select(p=> new {p.Name, p.Age});

C# Programming

19



Gloscol 2023

Returning other types from a Select

Select can be used to map the source element to a new type

o Select returns a new Employee for each Person

var people = new Person[] {new Person("Fred", 20, 30000), new Person("Mina", 30, 50000)};
// Must use var!
var names = people.Where(p => p.Salary>0)

.Select(p=> new Employee{FullName=p.Name, Salary=p.Salary});

C# Programming

20



How does LINQ work

LINQ is built on top of IEnumerable interface

e [Enumerable is implemented by almost all collections and arrays
o Implemented as a set of Extension methods to IEnumerable

o Any type implementing IEnumerable will have extension methods available

Extension methods include

o Select, Where, OrderBy

e Sum, Max, Min plus many more

21



Gloscol 2023

What is IEnumerable

IEnumerable is an interface that

o Facilitates iteration through a collection/stream of items

It defines a single function

e GetEnumerator() - returns IEnumerator

IEnumerator defines methods to allow scrolling through collections

e MoveNext()
e Current

e Reset

C# Programming

22



Gloscol 2023

Writing a Simple Enumerator

e This enumerator is designed to step through an array of Cars

class CarEnumerator : IEnumerator<Car> {
Car[] cars; int position = -1;
public CarEnumerator(Car[] cars) {
this.cars = cars;
}

public object Current => cars[position];
Car IEnumerator<Car>.Current => (Car)Current;
public void Dispose() { }
public bool MoveNext() {
return ++position >= 0 && position < cars.Length;
s

public void Reset(){
position=-1;
s

}

C# Programming



Gloscol 2023

Creating an IEnumerable Type

o All

the type hastodo is

o Implement IEnumerable and GetEnumerator()

o return a type implementing IEnumerator

class Garage : IEnumerable {

public IEnumerator GetEnumerator() {

C# Programming

return new CarEnumerator(

});

new
new
new
new
new

Car[] {

Car { Make
Car { Make
Car { Make
Car { Make

"Ford" },
"Mini" } ,
"Porsche" } ,
IIBMWII }

24



Gloscol 2023

What's the benefit of implementing IEnumerable?

Simple - You can user foreach on IEnumerable implementing types

foreach will
o Call GetEnumerator()

o Use the CarEnumerator to iterate through list of cars

var garage = new Garage();
foreach(Car car in garage) {

Console.WriteLine(car.Make);
b

C# Programming

25



Gloscol 2023

A even simpler enumerator

Call yield return from GetEnumerator()->IEnumerator

e Enables a calculated/generated enumerator to be created

class Garage : IEnumerable {

public IEnumerator GetEnumerator() A{
yield return new Car { Make = "Ford" };
yield return new Car { Make ="Mini" };
yield return new Car { Make ="Porsche" };
yield return new Car { Make ="BMW" };

C# Programming

26



Gloscol 2023

In this chapter we learned ...

e How to use Language Integrated Query

C# Programming

27



