
Interfaces

C# Programming

Gloscol 2023

C# Programming 1

In this chapter we will learn ...

Why interfaces are useful

How to define an interface

How to use interfaces to effect decoupling

Gloscol 2023

C# Programming 2

Interfaces

Gloscol 2023

C# Programming 3

What is an Interface

A contract?

A way of interacting with something?

None of the above?

Gloscol 2023

C# Programming 4

Question

What does the Control Panel on
the right allow us to do?

Gloscol 2023

C# Programming 5

Defining Capability

Probably the most widely
understood interface of all
describes the following
capabilities

Play

Record

Pause

Stop

Fast Forward, Rewind

Gloscol 2023

C# Programming 6

Exposing an Interface

When an object implements an

interface
VCR Implements Playable

interface

DVD implements Playable
interface

Anyone who understands that
interface can use it

Most people know how to
use the ubiquitous Playable

interface

Gloscol 2023

C# Programming 7

Why is that good?

We re-use system capabilities

Play Media

Spell Check Documents

Accelerate Object

Calculate Tax Due of all kinds of things
People, Cars, Houses, iPhones

Let's write code in terms of capability not type!

Gloscol 2023

C# Programming 8

Interfaces Benefits

Decoupled Code

Interfaces help break tightly bound links between classes

Fixed dependencies can be difficult to test and change

Flexible Code

Interfaces help us build flexibility

Flexibility allows us to change implementation when needed

Gloscol 2023

C# Programming 9

What is an Interface - Definition Part 1

An interface is a code contract

<accessibility> interface <name> {
 <methods> ...
 <properties> ...
 <events> ...
}

Defines methods properties and events an object must implement

Usually Contains no concrete code

Methods properties and events have no accessibility declarations

Gloscol 2023

C# Programming 10

Interface - Example

Interface acts as a code contract

Interface has no code associated with declarations

Specifies what not how

public interface IAccelerable {
 void Accelerate(int amount);
 int Speed {get;}
 int MaxSpeed {get;}
}

Gloscol 2023

C# Programming 11

Implementing an interface

Classes or Structs can implement one or more interfaces

Must implement the methods, properties and events contracted

A Compile Error will occur if Car doesn't implement the interface exactly

class Car: IAccelerable {
 public int Speed {get;}
 public virtual int MaxSpeed {get => 120}
 public virtual void Accelerate(int amount) {
 Thread.Sleep(80 * amount);
 Speed += amount;
 }
}

Gloscol 2023

C# Programming 12

Consider our Current Model

Car implements IAccelerable

RacingCar and RoadCar inherit from Car

Gloscol 2023

C# Programming 13

What if we want to Accelerate other objects?

AccelerateToMaxSpeed is expecting to be passed Cars not Rockets

Gloscol 2023

C# Programming 14

Principle of Substitution Allows us to write this

class Accelerator {
 public static void AccelerateToMaxSpeed(Car item) {
 while (item.Speed < item.MaxSpeed>) {
 item.Accelerate(5);
 }
 }
}

We can pass to AccelerateToMaxSpeed anything that is or derives from Car

Accelerator.AccelerateToMaxSpeed(new RoadCar());
Accelerator.AccelerateToMaxSpeed(new RacingCar());

Gloscol 2023

C# Programming 15

Problem

We have written a useful sub system - Accelerator that can

Accelerator Car objects to their maximum speed

We want to also use this sub system to Accelerate other things but

Substitution only allows derived types to be passed to base parameters

We need to decouple AccelerateToMaxSpeed from its dependence on type

Instead of using a Car parameter we can use an interface parameter

Gloscol 2023

C# Programming 16

Something in Common

At the moment RacingCar and RoadCar have something in common

Both inherit features from Car and can be substituted for Car

Let's give all of the types something in common

Make them all implement IAccelerable

Gloscol 2023

C# Programming 17

Defining Common Capability across unrelated types

All types below implement IAccelerable

Gloscol 2023

C# Programming 18

Rocket is IAccelerable

Let's make Rocket IAccelerable

class Rocket: IAccelerable {
 public int Speed {get;}
 public virtual int MaxSpeed {get => 1000}
 public virtual void Accelerate(int amount) {
 Thread.Sleep(5 * amount);
 Speed += amount;
 }
}

Gloscol 2023

C# Programming 19

Interface references

An Interface reference can reference any object that implements the interface

IAccelerable thing1 = new Car();
IAccelerable thing2 = new Rocket();
...
thing1.Accelerate(5); // Car object would accelerate by 5

We could also do this

List<IAccelerable> things = new List<IAccelerable> () {
 new RoadCar(), new Rocket(), new RacingCar(), new Train()
}
foreach(IAccelerable thing in things) {
 thing.Accelerate(5);
}

Gloscol 2023

C# Programming 20

Decoupling our Code with Interface References

class Accelerator {
 public static void AccelerateToMaxSpeed(Car item) {
 while (item.Speed < item.MaxSpeed>) {
 item.Accelerate(5);
 }
 }
}

Above code can be decoupled by changing Car parameter to IAccelerable

class Accelerator {
 public static void AccelerateToMaxSpeed(IAccelerable item) {
 ... // AccelerateToMaXSpeed can accelerate any object that implements IAccelerable
 }
}

Gloscol 2023

C# Programming 21

Working with Decoupled Code

AccelerateToMaxSpeed

Can work with any object that implements IAccelerable

Is decoupled from type dependence

Cares only what an object "Can Do" == Its capability

So we can do this

Accelerator.AccelerateToMaxSpeed(new RacingCar());
Accelerator.AccelerateToMaxSpeed(new Rocket());
Accelerator.AccelerateToMaxSpeed(new Train());

Gloscol 2023

C# Programming 22

What is an Interface - Definition Part 2

An interface is

1. A code contract

2. A decoupling mechanism allowing us to write algorithms that focus not on the type of
an object but its capability

Gloscol 2023

C# Programming 23

Breaking Interfaces

Ideally once an interface is published we don't change it

Changing an interface will cause implementing code to break

If an interface absolutely must change we can

Provide a default implementation for the breaking change

Allow implementing types to continue to work

Implementing types don't have direct access to the default implementation
Only way to access it is via an interface reference

Gloscol 2023

C# Programming 24

Interface - Default Implementations - C# 8.0

Assume this is the published interface is changed to code below

public interface IAccelerable {
 void Accelerate(int amount);
 int Speed {get;}
 int MaxSpeed {get;}
}

public interface IAccelerable {
 void Accelerate(int amount);
 int Speed {get;}
 int MaxSpeed {get;}
 void Boost() => Accelerate(20);
}

Gloscol 2023

C# Programming 25

Interface - Default Implementations Continued

Default Implementation prevents implementing types breaking

Car myCar = new Car();
myCar.Accelerate(5); // OK
myCar.Boost(); // Compilation Error! Boost() isn't available from Car reference

Car needs to implement Boost explicitly

We can access Boost() from the interface

IAccelerable myCar = new Car();
myCar.Boost(); // OK

Gloscol 2023

C# Programming 26

SOLID

Gloscol 2023

C# Programming 27

SOLID OOD Principles

Help us create well designed loose coupled, easier to test types

S - Single Responsibility

O - Open Closed Principle

L - Liskov Substitution Principle

I - Interface Segregation

D - Dependency Inversion

By Robert C Martin (Uncle Bob)

Gloscol 2023

C# Programming 28

Single Responsibility

A class should have only one reason to change

A class should have just one job

If it needs to change its because its job has changed

Imagine an Bank Account class

We might change how the bank account rules work

We shouldn't need to change the bank account class to alter how it talks to a
database

Know a class's responsibility and stick to it!

Gloscol 2023

C# Programming 29

Single Responsibility

Consider the following Code

Does it break Single Responsibility?

class Car {
 public void Accelerate(int amount) {
 Speed += amount;
 LogMetric("speed", Speed);
 }
 protected void LogMetric(string metric, object value) {
 Console.WriteLine($"{metric}:{value}");
 }
}

Gloscol 2023

C# Programming 30

ANSWER

YES

REASON

Car should be responsible for managing the Car simulation

It shouldn't have the responsibility for Logging
If we wanted to change how we did logging is that a valid reason to change Car?

What happens when we want to Log to a Database or to HTTP?

SOLUTION

Give the job of logging to another type and allow Car to reuse the logging services

Gloscol 2023

C# Programming 31

Towards Single Responsibility

Give Logger the responsibility for logging

Car can re-use Logger to access logging services

class Logger {
 public void LogMetric(string metric, object value) {
 Console.WriteLine($"{metric}:{value}");
 }
}
class Car {
 Logger logger = new Logger();
 public void Accelerate(int amount) {
 Speed += amount;
 logger.LogMetric("speed", Speed);
 }
}

Gloscol 2023

C# Programming 32

Open/Closed Principle

Code should be

Open for Extension yet Closed for modification

We should be able to

Add new functionality to the application without having to change existing code

Usually achieved using

Inheritance

Design patterns (such as Strategy pattern)

Writing flexible/adaptable methods

Gloscol 2023

C# Programming 33

Open Closed Principle - Inheritance

Here the MaxSpeed calculation is fixed to 120

class Car {
 ...
 public int MaxSpeed => 120;
}

But if we allowed this we could extend Car by inheritance

class Car {
 ...
 public virtual int MaxSpeed => 120;
}

Gloscol 2023

C# Programming 34

Extension by Inheritance

Below Car is extended into RacingCar

Car does not need to be changed

RacingCar is used to extend the application as a new type

Because MaxSpeed is virtual it can be overridden in RacingCar

class Car {
 ...
 public virtual int MaxSpeed => 120;
}
class RacingCar: Car {
 public override int MaxSpeed => base.MaxSpeed + 80;
}

Gloscol 2023

C# Programming 35

Benefits of Open Closed Principle

Existing code doesn't need to change

Existing tests are still valid

Code Coverage of existing tests is valid

Focus can be placed on proving correctness of extension

New test assets can be developed

Acceptable test coverage can be achieved for extension

Gloscol 2023

C# Programming 36

Liskov Substitution

Objects of a base class should be replaceable by objects of a derived class

Requirements

Derived Objects should not break the application

Overridden methods should keep the same parameters as the base

Overridden methods should not be more restrictive than the base

Overridden methods can be less restrictive than the base if desired

Gloscol 2023

C# Programming 37

Liskov - Reference Substitution

A base class reference variable can point to

Any derived object in inheritance hierarchy

That means we can do this

Car myCar = new RacingCar();

Gloscol 2023

C# Programming 38

Reference Substitution - Under the hood

Car myCar = new RacingCar();

Car reference points to RacingCar object

Gloscol 2023

C# Programming 39

Interface Segregation

"Types should not have to depend on interfaces they cannot use"

Broadly defined interfaces are difficult to implement

Many badly related methods often make no sense to implementing types

Better to have multiple compact and more tightly defined interfaces

Gloscol 2023

C# Programming 40

Interface Segregation - Example

interface IAccelerable {
 int Speed {get;set;}
 void Accelerate(int amount);
 void Brake();
}

If IAccelerable is be implemented by

Car - it all makes sense

Rocket - Brake() makes no sense on a Rocket

Gloscol 2023

C# Programming 41

Solution

Segregate the Interfaces into separate definitions

Selectively implement the relevant interface(s)

interface IAccelerable {
 int Speed {get;set;}
 void Accelerate(int amount);
}
interface IDecelerable {
 void Brake();
}
class Car: IAccelerable, IDecelerable {
 // Implement both IAccelerable and IDecelerable
}
class Rocket: IAccelerable { // Implement just IAccelerable
}

Gloscol 2023

C# Programming 42

Dependency Inversion

Imagine a Car with a combustion
engine built directly into the
engine bay

What problems would that cause?

Mmmmm.....

Gloscol 2023

C# Programming 43

Fixed Dependencies

Here Car has a fixed dependance on Logger

It can only ever use Logger to do logging

That means it can only ever Log to the console

class Car {
 Logger logger = new Logger();
 public void Accelerate(int amount = 5) {
 Speed += amount;
 logger.Log("speed", Speed);
 }
}

Gloscol 2023

C# Programming 44

Let's Invert the Dependency

A Logger Object is now passed in on creation of a Car

We could also pass any object that derives from Car

class Car {
 Logger logger;
 public Car(Logger logger) {
 this.logger = logger;
 }
 public void Accelerate(int amount = 5) {
 Speed += amount;
 logger?.Log("speed", Speed);
 }
}
Car myCar = new Car(new Logger());

Gloscol 2023

C# Programming 45

Decoupling Dependency Inversion

To Avoid using Fixed Dependencies we typically use Interfaces

interface ILogger {
 void Log(string metric, object value);
}

Car is declared using ILogger interface == NO Fixed Dependency

class Car {
 ILogger logger;
 public Car(ILogger logger) {
 this.logger = logger;
 }
}

Gloscol 2023

C# Programming 46

Note
Interfaces allow inter-type decoupling
* Focus on capability

Injecting Dependencies

Types implementing the dependent interface can be injected

class ConsoleLogger: ILogger {
 public void Log(string metric, object value) {
 Console.WriteLine($"{metric}:{value}");
 }
}
class FileLogger: ILogger { ... }

Dependency is now injected from the outside

Car myCar = new Car(new ConsoleLogger);
Car yourCar = new Car(new FileLogger);

Gloscol 2023

C# Programming 47

In this chapter we learned ...

Why interfaces are useful

How to define an interface

How to use interfaces to effect decoupling

Gloscol 2023

C# Programming 48

