Gloscol 2023

Interfaces

C# Programming

C# Programming

Gloscol 2023

In this chapter we will learn ...

o Why interfaces are useful
e How to define an interface

e How to use interfaces to effect decoupling

C# Programming

Gloscol 2023

Interfaces

C# Programming

Gloscol 2023

What is an Interface

e A contract?
e A way of interacting with something?

e None of the above?

C# Programming

Question

What does the Control Panel on
the right allow us to do?

Defining Capability

Probably the most widely
understood interface of all
describes the following
capabilities

e Play

e Record

e Pause

o Stop

Fast Forward, Rewind

Exposing an Interface

e When an object implements an
interface
o VCR Implements Playable
interface

o DVD implements Playable
interface

e Anyone who understands that
interface can use it
o Most people know how to
use the ubiquitous Playable
interface

Why is that good?

We re-use system capabilities

e Play Media
e Spell Check Documents
o Accelerate Object

e Calculate Tax Due of all kinds of things
o People, Cars, Houses, iPhones

Let's write code in terms of capability not type!

Interfaces Benefits

Decoupled Code

o [nterfaces help break tightly bound links between classes

» Fixed dependencies can be difficult to test and change

Flexible Code

o Interfaces help us build flexibility

o Flexibility allows us to change implementation when needed

Gloscol 2023

What is an Interface - Definition Part 1

An interface is a code contract

<accessibility> interface <name> {
<methods> ...
<properties> ...
<events> ...

o Defines methods properties and events an object must implement
o Usually Contains no concrete code

o Methods properties and events have no accessibility declarations

C# Programming

10

Gloscol 2023

Interface - Example

Interface acts as a code contract

e |Interface has no code associated with declarations

o Specifies what not how

public interface IAccelerable {
void Accelerate(int amount);
int Speed {get;}
int MaxSpeed {get;}

C# Programming

11

Gloscol 2023

Implementing an interface

Classes or Structs can implement one or more interfaces

o Must implement the methods, properties and events contracted

o A Compile Error will occur if Car doesn't implement the interface exactly

class Car: IAccelerable {
public int Speed {get;}
public virtual int MaxSpeed {get => 120}
public virtual void Accelerate(int amount) {
Thread.Sleep(80 * amount);
Speed += amount;

C# Programming

12

Gloscol 2023

Consider our Current Model

e Carimplements IAccelerable

e RacingCar and RoadCar inherit from Car

<<interface>>
lAccelerable
Speed
MaxSpeed

Car
Speed
MaxSpeed

Accelerate(amount)

Accelerate(amount)

(RacingCar [RoadCar \

Spoilers Registratian

4
N 4

C# Programming

Gloscol 2023

What if we want to Accelerate other objects?

o AccelerateloMaxSpeed is expecting to be passed Cars not Rockets

Car
Speed
MaxSpeed

Accelerate(amount)

/ RacingCar

Spoilers

N 4

C# Programming

4 RoadCar \

Registration

4

<<interface>>
lAccelerable
Speed
MaxSpeed

Accelerate(amount)

Train Rocket Particle

Carriages Sections Charge

14

Gloscol 2023

Principle of Substitution Allows us to write this

class Accelerator {
public static void AccelerateToMaxSpeed(Car item) {
while (item.Speed < item.MaxSpeed>) {
item.Accelerate(5);
I3

We can pass to AccelerateToMaxSpeed anything that is or derives from Car

Accelerator.AccelerateToMaxSpeed(new RoadCar());
Accelerator.AccelerateToMaxSpeed(new RacingCar());

C# Programming

15

Problem

We have written a useful sub system - Accelerator that can

o Accelerator Car objects to their maximum speed

We want to also use this sub system to Accelerate other things but

e Substitution only allows derived types to be passed to base parameters

We need to decouple AccelerateToMaxSpeed from its dependence on type

e Instead of using a Car parameter we can use an interface parameter

16

Something in Common

At the moment RacingCar and RoadCar have something in common

e Both inherit features from Car and can be substituted for Car

Let's give all of the types something in common

e Make them all implement |Accelerable

17

Gloscol 2023

Defining Common Capability across unrelated types

o Alltypes below implement [Accelerable

Car
Speed
MaxSpeed

Acceleratefamotnt)

/ RacingCar

Spoilers

4

C# Programming

/" Roadcar

Registration

N 4

Train

Carriages
Speed
MaxSpeed

Accelerate(amount)

<<interface>>
lAccelerable
Speed
MaxSpeed

Acceleratefamount)

Rocket
Sections
Speed
MaxSpeed

Accelerate(amount)

Particle
Charge
Speed
MaxSpeed

Accelerate(amount)

18

Gloscol 2023

Rocket is IAccelerable

Let's make Rocket IAccelerable

class Rocket: IAccelerable {
public int Speed {get;}
public virtual int MaxSpeed {get => 1000}
public virtual void Accelerate(int amount) {
Thread.Sleep(5 * amount);
Speed += amount;

C# Programming

19

Interface references

An Interface reference can reference any object that implements the interface

TAccelerable thingl
IAccelerable thing2

new Car();
new Rocket();

thingl.Accelerate(5); // Car object would accelerate by 5

We could also do this

List<IAccelerable> things = new List<IAccelerable> () {
new RoadCar(), new Rocket(), new RacingCar(), new Train()
¥

foreach(IAccelerable thing in things) {
thing.Accelerate(5);
¥

20

Gloscol 2023

Decoupling our Code with Interface References

class Accelerator {
public static void AccelerateToMaxSpeed(Car item) {
while (item.Speed < item.MaxSpeed>) {
item.Accelerate(5);
¥

Above code can be decoupled by changing Car parameter to |Accelerable

class Accelerator {
public static void AccelerateToMaxSpeed(IAccelerable item) {
. // AccelerateToMaXSpeed can accelerate any object that implements IAccelerable
I3

C# Programming

21

Working with Decoupled Code

AccelerateToMaxSpeed

e Can work with any object that implements |Accelerable
e |s decoupled from type dependence

e Cares only what an object "Can Do" == Its capability

So we can do this

Accelerator.AccelerateToMaxSpeed(new RacingCar());

Accelerator.AccelerateToMaxSpeed(new Rocket());
Accelerator.AccelerateToMaxSpeed(new Train());

22

Gloscol 2023

What is an Interface - Definition Part 2

An interface is

1. A code contract

2. A decoupling mechanism allowing us to write algorithms that focus not on the type of
an object but its capability

C# Programming

23

Breaking Interfaces

Ideally once an interface is published we don't change it

e Changing an interface will cause implementing code to break

If an interface absolutely must change we can

e Provide a default implementation for the breaking change
o Allow implementing types to continue to work

e Implementing types don't have direct access to the default implementation
o Only way to access it is via an interface reference

24

Gloscol 2023

Interface - Default Implementations - C# 8.0

Assume this is the published interface is changed to code below

public interface IAccelerable {
void Accelerate(int amount);
int Speed {get;}
int MaxSpeed {get;}

public interface IAccelerable {
void Accelerate(int amount);
int Speed {get;}
int MaxSpeed {get;}
void Boost() => Accelerate(20);

C# Programming 25

Gloscol 2023

Interface - Default Implementations Continued

Default Implementation prevents implementing types breaking

Car myCar = new Car();
myCar.Accelerate(5); // OK
myCar.Boost(); // Compilation Error! Boost() isn't available from Car reference

e Car needs to implement Boost explicitly

We can access Boost() from the interface

IAccelerable myCar = new Car();
myCar.Boost(); // OK

C# Programming

26

Gloscol 2023

C# Programming

SOLID

27

SOLID OOD Principles

Help us create well designed loose coupled, easier to test types
e S - Single Responsibility
e O - Open Closed Principle

e L - Liskov Substitution Principle

| - Interface Segregation

D - Dependency Inversion

By Robert C Martin (Uncle Bob)

28

Single Responsibility

A class should have only one reason to change

e A class should have just one job

e |f it needs to change its because its job has changed

Imagine an Bank Account class

* \We might change how the bank account rules work

o \We shouldn't need to change the bank account class to alter how it talks to a
database

Know a class's responsibility and stick to it!

29

Gloscol 2023

Single Responsibility

Consider the following Code

e Does it break Single Responsibility?

class Car A

public void Accelerate(int amount) {
Speed += amount;
LogMetric("speed", Speed);

I3

protected void LogMetric(string metric, object value) {
Console.WriteLine($"{metric}:{valuel}l");

s

C# Programming

30

Gloscol 2023

ANSWER

YES

REASON

e Car should be responsible for managing the Car simulation

e [t shouldn't have the responsibility for Logging
o |f we wanted to change how we did logging is that a valid reason to change Car?

o What happens when we want to Log to a Database orto HTTP?

SOLUTION
e Give the job of logging to another type and allow Car to reuse the logging services

C# Programming

31

Gloscol 2023

Towards Single Responsibility

e Give Logger the responsibility for logging

e Car canre-use Logger to access logging services

class Logger {
public void LogMetric(string metric, object value) {
Console.WriteLine($"{metric}:{value}");
I3

¥
class Car A
Logger logger = new Logger();
public void Accelerate(int amount) {
Speed += amount;
logger.LogMetric("speed", Speed);

C# Programming

32

Open/Closed Principle

Code should be

e Open for Extension yet Closed for modification

We should be able to

o Add new functionality to the application without having to change existing code

Usually achieved using

e |Inheritance
e Design patterns (such as Strategy pattern)

o Writing flexible/adaptable methods

33

Gloscol 2023

Open Closed Principle - Inheritance

Here the MaxSpeed calculation is fixed to 120

class Car {

public int MaxSpeed => 120;
s

But if we allowed this we could extend Car by inheritance

class Car {

public virtual int MaxSpeed => 120,
Iy

C# Programming

34

Gloscol 2023

Extension by Inheritance

Below Car is extended into RacingCar

o Car does not need to be changed
e RacingCar is used to extend the application as a new type
e Because MaxSpeed is virtual it can be overridden in RacingCar
class Car {
public virtual int MaxSpeed => 120;
¥

class RacingCar: Car A
public override int MaxSpeed => base.MaxSpeed + 80;
I3

C# Programming

35

Gloscol 2023

Benefits of Open Closed Principle

Existing code doesn't need to change

e Existing tests are still valid

e Code Coverage of existing tests is valid

Focus can be placed on proving correctness of extension

e New test assets can be developed

o Acceptable test coverage can be achieved for extension

C# Programming

36

Liskov Substitution

Objects of a base class should be replaceable by objects of a derived class

Requirements

e Derived Objects should not break the application
e Overridden methods should keep the same parameters as the base
e Overridden methods should not be more restrictive than the base

e QOverridden methods can be less restrictive than the base if desired

37

Gloscol 2023

Liskov - Reference Substitution

A base class reference variable can point to

o Any derived object in inheritance hierarchy

That means we can do this

Car myCar = new RacingCar();

C# Programming

38

Gloscol 2023

Reference Substitution - Under the hood

Car myCar = new RacingCar();

e Car reference points to RacingCar object

myCar

< i

Accelerate(int amount)

C# Programming 39

Gloscol 2023

Interface Segregation

"Types should not have to depend on interfaces they cannot use”

Broadly defined interfaces are difficult to implement

o Many badly related methods often make no sense to implementing types

o Better to have multiple compact and more tightly defined interfaces

C# Programming

40

Gloscol 2023

Interface Segregation - Example

interface IAccelerable {
int Speed {get;set;}
void Accelerate(int amount);
void Brake():

If IAccelerable is be implemented by

e Car - it all makes sense

e Rocket - Brake() makes no sense on a Rocket

C# Programming

41

Gloscol 2023

Solution

Segregate the Interfaces into separate definitions

o Selectively implement the relevant interface(s)

interface IAccelerable {
int Speed {get;set;}
void Accelerate(int amount);

}

interface IDecelerable {
void Brake():
I

class Car: IAccelerable, IDecelerable {
// Implement both IAccelerable and IDecelerable
s

class Rocket: IAccelerable { // Implement just IAccelerable
I3

C# Programming

42

Gloscol 2023

Dependency Inversion

Imagine a Car with a combustion
engine built directly into the
engine bay

What problems would that cause?

43

C# Programming

Gloscol 2023

Fixed Dependencies

Here Car has a fixed dependance on Logger

e |t can only ever use Logger to do logging

e That means it can only ever Log to the console

class Car A
Logger logger = new Logger();
public void Accelerate(int amount = 5) {
Speed += amount;
logger.Log("speed", Speed);

C# Programming

44

Gloscol 2023

Let's Invert the Dependency

o A Logger Object is now passed in on creation of a Car
o We could also pass any object that derives from Car

class Car {
Logger logger;
public Car(Logger logger) {
this. logger = logger;
+

public void Accelerate(int amount = 5) {
Speed += amount;
logger?.Log("speed", Speed);
I3
¥

Car myCar = new Car(new Logger());

C# Programming

45

Gloscol 2023

Decoupling Dependency Inversion

To Avoid using Fixed Dependencies we typically use Interfaces

interface ILogger {
void Log(string metric, object value);
+

Car is declared using ILogger interface == NO Fixed Dependency

class Car A
ILogger logger;
public Car(ILogger logger) A
this. logger = logger;
s

}

C# Programming

46

Note
Interfaces allow inter-type decoupling
* Focus on capability

Gloscol 2023

Injecting Dependencies

Types implementing the dependent interface can be injected

class ConsolelLogger: ILogger {
public void Log(string metric, object value) {
Console.WriteLine($"{metric}:{valuel}l");
s

s
class FilelLogger: ILogger { ... }

Dependency is now injected from the outside

Car myCar = new Car(new ConsolelLogger);
Car yourCar = new Car(new FilelLogger);

C# Programming

47

Gloscol 2023

In this chapter we learned ...

o Why interfaces are useful
e How to define an interface

e How to use interfaces to effect decoupling

C# Programming

48

