
Value and Reference Types

C# Programming

Gloscol 2023

C# Programming 1

In this chapter we will learn ...

About value types and how to create them

About reference types and how to create them

Gloscol 2023

C# Programming 2

Value Types

C# Value Types include

int, byte, short, unit64, uint16 etc

float, double, decimal

bool

char

Usually small data types

Used as fields in other types

Local variables of functions

Gloscol 2023

C# Programming 3

Value Types - Quick Facts

Allocated on the stack when declared with a function

Defined by structs, tuples or enums

Assigning one value type variable to another always creates a copy

Do not need Garbage collection

(Can be attributes of an object which do)

Don't support inheritance

Gloscol 2023

C# Programming 4

Value Types Memory Allocation

Added to the stack as local variables in functions

Allocated to the heap as member variables of

classes

void DoSomething() {
 int x = 10;
 int y = 20;
}

Value is held within variable

Gloscol 2023

C# Programming 5

Value Type Stack Variables

Pushed onto the stack when a function executes

Pops off the stack once function has finished

executing

Simple memory model

void DoSomething() {
 int x = 10;
 int y = 20;
}

Gloscol 2023

C# Programming 6

Assigning a value type creates
an independent copy

void DoSomething() {
 int x = 10;
 int y = x;
}

x and y are independent of each other

Changing x will not affect y

Gloscol 2023

C# Programming 7

Independent copies don't affect
each other

void DoSomething() {
 int x = 10;
 int y = x;
 x = 20;
}

x changes to 20

y remains at 10. No side effect!

Value Types have no side effects

Gloscol 2023

C# Programming 8

structs

Are Value Types

Support
Fields

Methods

Properties

Events

Don't support inheritance

Can implement one or more interfaces

Support Composition

Used for small attribute style data types

Gloscol 2023

C# Programming 9

Defining new Value Types with struct

public struct Rectangle
{
 public int Width ;
 public int Height ;
 public int Area => Width * Height;
}

Defines a value type containing two fields
Width as an int

Height as an int

Gloscol 2023

C# Programming 10

Declaring a custom Value Type

void DoSomething() {
 Rectangle r1; // Declare variable
 r1.Width = 10; // Set field values
 r1.Height = 2;
 Console.WriteLine(r1.Area);
}

When DoSomething() executes

Rectangle will be allocated onto stack

Will contain Width and Height fields

Will print 20

Gloscol 2023

C# Programming 11

Initializing structs

structs must be initialized before access

Directly or via Properties, Methods, Events

void DoSomething() {
 Rectangle r1; // Declare variable
 r1.Width = 10; // Set field values
 // r1.Height = 2;
 Console.WriteLine(r1.Area); // Error: Unassigned Variable
}

All fields must be initialized first

Gloscol 2023

C# Programming 12

Using Constructor syntax

structs can have constructor functions

Allows struct to be initialized with starter values

public struct Rectangle {
 public int Width ;
 public int Height ;
 public int Area => Width * Height;
 public Rectangle(int width, int height) {
 Width = width;
 Height = height;
 }

}

Gloscol 2023

C# Programming 13

Using the struct constructor

Rectangle r1 = new Rectangle(10, 2);
Console.WriteLine(r1.Area);

Value Type behaves as normal

Allocated onto stack if declared in a function

Use of new invokes constructor

No objects are created on Heap

Gloscol 2023

C# Programming 14

Constructor must initialize All fields of struct

struct Rectangle
{
 public int Width;
 public int Height;
 public int X, Y;
 public int Area => Width * Height;
 public Rectangle(int width, int height) // Error - Must Initialise X and Y
 {
 Width = width;
 Height = height;
 }

}

struct fields can be initialized at declaration

C# 10 onwards

Gloscol 2023

C# Programming 15

Blank (parameterless) Constructor - C# 10

Structs can have a parameterless/blank constructor

You must initialize all fields

 ...
 public Rectangle()
 {
 Width = 0;
 Height = 0;
 }

Gloscol 2023

C# Programming 16

Copying structs

structs will be copied on assignment

> Rectangle r1 = new (10, 2);
> Rectangle r2 = r1;
> r1.Area
20
> r2.Area
20

r2 is distinct copy of r1

Gloscol 2023

C# Programming 17

Recap

Value Types have limited side effects

> Rectangle r1 = new (10, 2);
> Rectangle r2 = r1;
> r1.Height = 5;
> r1.Area
50
> r2.Area
20

Changing r1 does not impact r2

Gloscol 2023

C# Programming 18

Checking struct equality

structs can be tested for equality using Equals method

> Rectangle r1 = new (10, 2);
> Rectangle r2 = r1;
> r1.Equals(r2)
true
> r1.Height = 5;
> r1.Equals(r2)
false

Cannot use == or != unless operator overloading is implemented

Gloscol 2023

C# Programming 19

Mutable structs

Mutable types allow their attributes to change

struct Rectangle {
 public int Width {get; set;} // Property with setter
 public int Height {get; set;} // Property with setter
 public Rectangle(int width, int height) {
 Width = width;
 Height = height;
 }
 public void Scale(int by) {
 Width *= by;
 Height *= by;
 }
}

Gloscol 2023

C# Programming 20

Immutable structs

structs can be declared as immutable

Type is declared as readonly

When you declare a type as readonly

All fields must be declared readonly

All properties must be declared readonly

Gloscol 2023

C# Programming 21

Example - Immutable structs

readonly struct Rectangle {
 public readonly int Width {get; init;} // Property with init only setter
 public readonly int Height {get; init;} // Property with init only setter
 public Rectangle(int width, int height) {
 Width = width;
 Height = height;
 }
 public Rectangle Scale(int by) {
 // A new Rectangle is returned
 return new Rectangle(Width * by, Height * by);
 }
 public int Area => Width * Height;
}

Notice the init only properties

Scale method returns a new Rectangle. Does not mutate existing values

Gloscol 2023

C# Programming 22

Non Destructive mutation

By

Declaring a struct with a parameterless constructor

Using a with operator

Non destructive mutation can be achieved

> Rectangle r1 = new Rectangle(10, 2);
> Rectangle r2 = with r1 { Height = 5}; // Copy r1, mutate Height to 5
r2.Area

Gloscol 2023

C# Programming 23

Flexible structs

Consider the following struct

struct AccountNumber {
 int number;
 public AccountNumber(int number){
 this.number = number;
 }
}

AccountNumber acc = new AccountNumber(1234); // Works!
AccountNumber num = 1234; // Fails!!!!

Gloscol 2023

C# Programming 24

Implicit conversion

You must add implicit conversion operators

struct AccountNumber {
 int number;
 public AccountNumber(int number){
 this.number = number;
 }
 public static implicit operator AccountNumber(int value) {
 if (value.ToString().Length == 7)
 return new AccountNumber(value);
 else
 throw new ArgumentException("Not a valid Account number");
 }
 }

Gloscol 2023

C# Programming 25

Implicit Casting

How do we retrieve an int from an AccountNumber?

AccountNumber acc = new AccountNumber(1234);
int num = acc;

Implement an implicit cast operator for int

struct AccountNumber {
 ...
 public static implicit operator int(AccountNumber acc) => acc.number;
}

Gloscol 2023

C# Programming 26

ref struct Types

Force allocation of structs onto the stack only

ref struct Rectangle {

}

That means ref structs ...

Can't be fields/properties of classes

Cant be declared as an array or with a generic type

Can't implement interfaces

Can't be function arguments

Gloscol 2023

C# Programming 27

struct recommendations

�. Keep them small - Ideally <= 16-32 bytes
They have to be allocated onto the stack

They always get copied

�. Use them for genuine added value attribute types
AccountNumbers, ZipCodes etc

�. Use with Interfaces not Inheritance

Gloscol 2023

C# Programming 28

Reference Variables

References essentially

Reference objects

Are accessible from managed code

Auto dereference - no need for dereferencing operator

int x = 10;
ref int p = ref x; // Get reference to x
Console.WriteLine(p); // Can print p which will auto reference to x to print 10

Gloscol 2023

C# Programming 29

Reference Types - Quick Facts

Defined by two things
A reference variable that points to

On Object that is allocated on the heap

Defined by classes

Assigning one reference type variable to another only copies the reference NOT the
object

Need Garbage collection

Support inheritance

Gloscol 2023

C# Programming 30

Classes and Objects

Reference Types are defined by classes (or records)

Class

Defines a template for creating objects on the heap
Defines attributes, methods, properties and events

Object

An instance of a class in memory

Occupies its own memory location

Has own unique identity and separate set of attribute values

Gloscol 2023

C# Programming 31

Example - Classes

class Car {
 public int speed;
 public string regNum;
}

Object created from class

// Reference Object
Car myCar = new Car();

Gloscol 2023

C# Programming 32

Anatomy of a Reference Type

Reference Types have

A reference variable
Holds a reference/address of the object on the heap

An object that stores the data defined by the attributes class
Object is stored at a specific memory address on the heap

Reference variables act as small lightweight pointers

References can be passed around app regardless of size of object

Gloscol 2023

C# Programming 33

Accessing objects

Access to the object requires the reference variable

Car myCar = new Car();
myCar.speed = 25;

Gloscol 2023

C# Programming 34

Working with References

Car myCar = new Car();
myCar.speed = 25;
Car yourCar = myCar;
myCar.speed = 45;

Gloscol 2023

C# Programming 35

Assigning References

Assigning one reference to another

Copies the reference not the object

Result is two reference both referencing the same object

Reference Assignment creates side effects

What you do to one of the reference copies applies to the common object

Effect will be felt by other reference

Gloscol 2023

C# Programming 36

Assigning References - Example

> Car myCar = new Car();
> Car yourCar = myCar;
> myCar.speed = 25;
> yourCar.speed
25

Gloscol 2023

C# Programming 37

Initializing Classes

Data Fields can be initialized

At declaration

Inside one or more constructors

Auto Initialized to the types default value (null or zero)

Gloscol 2023

C# Programming 38

Auto Initialization

Fields will be initialized to the default values for their type

0 for numbers

false for bool

null for reference types like strings

public class Car {
 public int speed ; // Initialised to 0
 public float
}

Gloscol 2023

C# Programming 39

Declarative Initialization

Fields can be explicitly initialized at declaration

public class Car {
 public int speed = 0; // Initialised explictly to 0
}

Gloscol 2023

C# Programming 40

Initialization via Constructor

Constructors functions explicitly initialize an object

Don't need to initialize all fields

public class Car {
 public int speed ;
 // Empty constructor function has no parameters
 public Car(){
 this.speed = 0;
 }
}

An empty constructor will be generated if no other constructor is defined

Gloscol 2023

C# Programming 41

Overloaded Constructors

Multiple constructor functions can be defined

public class Car {
 public int speed ;
 public Car(){
 this.speed = 0;
 }
 public Car(int speed){
 this.speed = speed;
 }
}

Gloscol 2023

C# Programming 42

Invoking Constructors

Constructor invoked on object creation

> Car myCar = new Car(); // Invokes the blank constructor
> Car yourCar = new Car(5); // Invokes the Car(int speed) constructor
> myCar.speed
0
> yourCar.speed
5

Gloscol 2023

C# Programming 43

Chaining Constructor Calls

One constructor can be called from another

Can be used to reuse initialization code

Use this keyword to call to other constructor

public class Car {
 public int speed ;
 public Car(): this(0) {
 }
 public Car(int speed){
 this.speed = speed;
 }
}

Gloscol 2023

C# Programming 44

null and reference
types

So what is null

When reference isn't pointing to
an object

null is a default literal value
stored in reference variables

null generally means empty or

unknown

Gloscol 2023

C# Programming 45

nullable value types - C# 7.0

How can we represent unknown or empty with a value type variable?

Declare a value type as nullable using
?

Generic Nullable

> int? age = null;
> Nullable<decimal> price = 5.75;
> age
null
> age == null && price != null
true

A base type can be assigned to it's nullable counter-part

Gloscol 2023

C# Programming 46

Working with nullable

Nullable types provide helper features

HasValue - true if variable is not null

Value - Actual non nullable value
Nullable returns int

Nullable<decimal> price = 5.75;
if (price.HasValue) {
 decimal tax = price.Value * 0.2m;
 Console.WriteLine($"Tax:{tax}");
}

Gloscol 2023

C# Programming 47

Take care with nullable

> int? age = null;
> int actualAge = age;
(1,9) error : Cannot implicitly convert from int? to int

Explicit cast is required

> int actualAge = (int) age;

Gloscol 2023

C# Programming 48

Safely Working with nullable value types

Using the is operator

Allows a safe guarded cast

int? age = 21;
if (age is int actualAge) {
 Console.WriteLine($"Age is {actualAge}");
}

Gloscol 2023

C# Programming 49

Operators and Nullable Types

Nullable Types will respect standard/overloaded operators

Operators return null if a Nullable value in evaluation is null

 > int? a = 10;
 > int b = 2;
 > a * b
 20
 > int? c = null;
 > b * c
 null

Gloscol 2023

C# Programming 50

null operators

null coalescing operator ?? helps deal with null

string a = null;
string b = "Hello World";
// If a is not null assign a to c
// Otherwise assign b to c
string c = a ?? b;

Gloscol 2023

C# Programming 51

Dealing with null references

Sometimes you will want to handle a null reference gracefully

List<string> names = null;

To add a name we could do

if (names is null) names = new List<string>();
names.Add("Fred");

or use ??= operator

(names ??= new List<String>()).Add("Fred"); // if names is null create a new List

Gloscol 2023

C# Programming 52

null coalescing operator

Safely returns null if the expression on the left side of an accessor evaluates to null

Use ? before . accessor

Car myCar = null;

int speed = myCar.Speed; // throws Null reference exception

int? speed = myCar?.Speed; // returns null if myCar is null, no exception

Gloscol 2023

C# Programming 53

nullable reference types

Because nulls are responsible for so many Exceptions

We can now outlaw them!

Change setting in Project file (.csproj)

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 ...
 <Nullable>enable</Nullable>
 ...
 </PropertyGroup>
</Project>

Requires reference types to be initialized and not left null

Gloscol 2023

C# Programming 54

Equality Testing

Reference Types allow basic equality testing

Can check if references are equal

use == or ReferenceEquals

Cannot check data field equivalence by default

> Car myCar = new Car(5);
> Car yourCar = new Car(5);
> myCar == yourCar
false

myCar == yourCar compares references not speeds

Gloscol 2023

C# Programming 55

Content/Attribute equality

Must be explicitly implemented by overriding methods

Equals - Explicitly compares attributes of two objects and returns true/false

GetHashCode - Generates a unique hash code based on attribute combination

Can also override operators

==

!= (must be implemented as a pair)

Gloscol 2023

C# Programming 56

Generating a Hash Code

Override Equals and GetHashCode

Use HashCode.Combine to generate a hash-code from attributes

class Car {
 int speed;
 string reg;
 public override bool Equals(object obj){
 return this.GetHashCode() == obj.GetHashCode();
 }
 public override int GetHashCode(){
 return HashCode.Combine(speed, reg);
 }
}

Gloscol 2023

C# Programming 57

Overriding comparison operator

You can override == and !=

Implement Equals and GetHashCode first

class Car {
 ...
 public static bool operator == (Car lhs, Car rhs) {
 return lhs.Equals(rhs);
 }
 public static bool operator !=(Car lhs, Car rhs) {
 return !lhs.Equals(rhs);
 }
}

Use ReferenceEquals() to test for reference equality after operator override

Gloscol 2023

C# Programming 58

In this chapter we learned ...

About value types and how to create them

About reference types and how to create them

Gloscol 2023

C# Programming 59

