
Data Types and Operations

C# Programming

Gloscol 2023

C# Programming 1

In this chapter we will learn ...

Understand main C# data types

Data Type Operations

Type Conversions

Gloscol 2023

C# Programming 2

Name some C# Data Types?

Question

Gloscol 2023

C# Programming 3

C# Language Data Types

C# specifies a number of builtin types

int

string, char

float, double

decimal

bool

Act as aliases for the actual framework data types

Gloscol 2023

C# Programming 4

Declaring Variables

Gloscol 2023

C# Programming 5

Framework Data Types

Gloscol 2023

C# Keyword .NET Type Size Min Max

sbyte System.SByte Signed 8 Bit Integer -128 == 0-(Max + 1) 127

byte System.Byte Un-Signed 8 Bit Integer 0 255

short System.Int16 Signed 16 Bit Integer 0 - (Max + 1) 32767

ushort System.UInt16 Un-Signed 16 Bit Integer 0 65535

uint System.UInt32 Un-Signed 32 Bit Integer 0 4294967295

int System.Int32 Signed 32 Bit Integer 0 - (Max + 1) 2147483647

ulong System.UInt64 Un-Signed 64 Bit Integer 0 18446744073709551615

long System.Int64 Signed 64 Bit Integer 0 - (Max + 1) 9223372036854775807

C# Programming 6

C# or Framework Data Types

Most developers use C# language types

int == System.Int32

string == System.String

Code is more flexible

Data Types can be redefined as framework changes

Gloscol 2023

C# Programming 7

Integers

Whole Numbers

// 8 Bit Integers
System.SByte signed_8Bit_Int = 127; // Max == 127 Min = -128
System.Byte unSigned_8Bit_Int = 255; // Max = 255 Min = 0
Console.WriteLine(signed_8Bit_Int);
Console.WriteLine(unSigned_8Bit_Int);

using System;
// Can declare Signed/UnSigned 16, 32, 64 bit integers
Int16 s16i = Int16.MaxValue;
UInt16 us16i = UInt16.MaxValue;
Console.WriteLine(s16i); // 32767
Console.WriteLine(us16i); // 65535

Gloscol 2023

C# Programming 8

Floating Point

Binary floating point types

float - single precision - 32 bit

double - double precision - 64 bit

Can suffer rounding/formatting issues

> 0.1 + 0.2 == 0.3
false

Gloscol 2023

C# Programming 9

Boolean

Simple Data Type for storing true or false

bool employed = true;
bool married = false;
if (employed == true && married)
{
 // Do Something
}

Gloscol 2023

C# Programming 10

Character

Character Type defines a single character

char initial = 'C';

Note the use of single quotes!

Gloscol 2023

C# Programming 11

String

Standard C# strings are immutable (can't be changed in memory)

Allocated onto the heap

Accessed via a smart pointer called a reference

Assigning a new value to a string ...

creates a new object on the heap

re-adjusts the reference to point to the new object

Gloscol 2023

C# Programming 12

Declaring a string

Use either declaration:

both are equivalent although the first declaration is preferred

string s1; // or
System.String s2;

String variables can be initialized to null at declaration

No string object is created at this point

string s1 = null;

Gloscol 2023

C# Programming 13

Creating Strings

Code below creates a blank string on the heap and 's' references it

string s = "";

Create a new string containing "Hello World"

Blank string is left behind on the heap to be Garbage Collected

string s = "Hello World";

Better would be because it doesn't leave a blank string to be GC'ed

string s = String.Empty;

Gloscol 2023

C# Programming 14

Raw string literals

Multiline strings can now be declared (C# 11)

Place text between triple-double quotes """

string html= """
<html>
 <head></head>
 <body></body>
</html>

""";

Gloscol 2023

C# Programming 15

Type behaviors

.NET Data Types behavior depend on their classification

.NET Data Types can be

Value Types

int, float, double, bool etc

structs, enums, tuples

Reference Types

string, list etc

Anything defined as a class or record

Pointer Types

Gloscol 2023

C# Programming 16

Value Types - Quick Facts

Allocated on the stack when declared with a function

Defined by structs or enums

Assigning one value type variable to another always creates a copy

Do not need Garbage collection

(Can be attributes of an object which do)

Don't support inheritance

Gloscol 2023

C# Programming 17

Reference Types - Quick Facts

Defined by two things
A reference variable that points to

On Object that is allocated on the heap

Defined by classes

Assigning one reference type variable to another only copies the reference NOT the
object

Need Garbage collection

Support inheritance

Gloscol 2023

C# Programming 18

Arrays - Collecting Data Together

Storing data in separate variable is not always practical

We might want to process data together rather than separately

Organizing data logically together can be useful

Arrays allow data of the same type to be arranged together

Gloscol 2023

C# Programming 19

Arrays

Arrays are type-safe containers

Inherit from System.Array

Allocated onto the Heap
Accessed via references

Indexed

Usually 0 based and fixed size

Elements initialized to type default

0 for numbers, false for boolean

null for reference types

Gloscol 2023

C# Programming 20

Types of Array

There are three types of array

Single Dimension

Multi Dimension

Jagged

Gloscol 2023

C# Programming 21

Single Dimension Array

Example: Array of five integers

int[] numbers = new int[5];

Could also be defined as

int[] numbers; // Define int Array reference variable
numbers = new int[5]; // Create array object and assign to reference variable

or ... define an array with predefined content (five zeros)

int[] numbers = {0, 0, 0, 0, 0};

Gloscol 2023

C# Programming 22

Working with arrays

Members of an array can be accessed using indexes

First element is at position 0

Last element is at n-1

> int[] numbers = {2, 4, 6, 8, 10};
> numbers
int[5] { 2, 4, 6, 8, 10 }
> numbers[1]
4

What would numbers[3] return?

Gloscol 2023

C# Programming 23

Updating Arrays

Values can be assigned to individual array elements

Specify the index for the element to update

Here we update the element as position 1

> int[] numbers = {2, 4, 6, 8, 10};
> numbers[1] = 99;
> numbers
int[5] { 2, 99, 6, 8, 10 }

Because arrays are 0 based the second element in the array is updated

Gloscol 2023

C# Programming 24

Types of operations

Assignment operators

Math operators

Logical operators

Bitwise operators

Compound Operators

Gloscol 2023

C# Programming 25

Assignment Operator

Most common operator to create data values

Single = acts as assignment operator

string name = "Fred";
byte age = 21;
age = 33; // Assignment after declaration

Gloscol 2023

C# Programming 26

Basic Operators

> 2 + 3
5
> 5 - 3
2
> 2 * 4
8

Gloscol 2023

Operator Description

+ Add

* Subtract

/ Divide

% Modulo Divide (remainder division)

C# Programming 27

What will be the result

> 10 / 3

A. 3.3333333

B. 3.0

C. 3

Gloscol 2023

C# Programming 28

Data Operation Rules

Operations on like data types results in the same data type
operation on two integers will produce an integer result

Operations on different data types will result in larger of two data types

byte and long -> long

int32 and decimal -> decimal

> 10 / 3
3
> 10 / 3.0
3.3333333333333335

Gloscol 2023

C# Programming 29

Modulo Operator

% operator returns the remainder from integer division

> 10 / 3
3
> 10 % 3 // 10 == 3 * 3 == 9 remainder 1
1

Gloscol 2023

C# Programming 30

Compound Operators

Basic Operators can be used in this way

> int count = 0;
> count = count + 1;
> count
1

+ operator can be used in a shortened/compound form

> count += 1; // Both syntax forms produce equivalent result
> count
2

Gloscol 2023

C# Programming 31

Compound Operators

Here are the other compound operators

Gloscol 2023

Operator Name Description

+= Increment Increase by x

-= Decrement Decrease by x

*= Multiply Multiply by x

/= Divide Divide by x

%= Modulo Modulo by x

<<= >>= &= ^= |= Bitwise Bitwise apply x (see later)

C# Programming 32

Unary Operators

> int count = 0;
> count++;
> count
1

Gloscol 2023

Operator Name Description

++ Increment Increase by 1

-- Decrement Decrease by 1

- Negate Flip sign

C# Programming 33

Comparison Operators

x = 2;

Gloscol 2023

Operator Name Examples

< Less than x<5 (returns true)

> Greater than x>5 (returns false)

<= Less than equal to x<=2 (returns true)

>= Greater than equal to x>=2 (returns true)

== Equal equal to x==2 (returns true)

!= Not equal to x!=2 (returns false)

C# Programming 34

Logical Operators

Allow boolean results to be combined

Produce a boolean result

Used as clauses in if, while, for, ternary statements

Gloscol 2023

Operator Name Examples

&& And
true && true -> true
true && false -> false

| | Or
true | | true -> true
true | | false -> true

^ Xor
true ^ true -> false
true ^ false -> true

C# Programming 35

Logical Operators - Example

if statement with a logical clause

int age = 21;
string name = "Fred";

if (age < 18 && name.Length > 0) {
 Console.WriteLine("Valid Child's Name");
}

Question

Does the C# runtime actually check the name length?

Gloscol 2023

C# Programming 36

Short Circuit Operators

Logic Operators short circuit when combined

&& returns false if left clause evaluates false - does not test right clause!

|| returns true if left clause evaluates true - does not test right clause!

So given:

if (age < 18 && name.Length > 0) {
 Console.WriteLine("Valid Child's Name");
}

age < 18 would short circuit

name.Length > 0 would not be evaluated

Gloscol 2023

C# Programming 37

Simple Precedence - BODMAS

Gloscol 2023

C# Programming 38

BODMAS Example

Precedence

> 10 + 5 * 3 // * has higher precedence than + and applies first
25
> (10 + 5) * 3 // () have higher precedence than * and apply first
45

Associativity

> int b = 5, c = 1;
> int a = b = c; // = has right to left associativity
> a // op order is c = 1->b = c->a = b
1

Gloscol 2023

C# Programming 39

Precedence - Decreasing Order

Operators at the top of the list have highest order of precedence

Gloscol 2023

Symbol Type of operation Associativity

[] () . -> ++ -- (postfix) Expression Left to right

sizeof & * + - ~ ! ++ -- (prefix) Unary Right to left

typecasts Unary Right to left

* / % Multiplicative Left to right

+ - Additive Left to right

<< >> Bitwise shift Left to right

< > <= >= Relational Left to right

C# Programming 40

Precedence - Decreasing Order (continued)

Gloscol 2023

Symbol Type of operation Associativity

== != Equality Left to right

& Bitwise-AND Left to right

^ Bitwise-exclusive-OR Left to right

| Bitwise-inclusive-OR Left to right

&& Logical-AND Left to right

| | Logical-OR Left to right

? : Conditional-expression Right to left

= *= /= %= += -= <<= >>= &= ^= |= Simple and compound assignment Right to left

C# Programming 41

Type Conversion

Converting data types is a common need in programming

How do we convert a string into an int

How does a decimal get converted into a decimal?

We will look at

Implicit Conversions

Explicit Conversions

Helper function Conversions

Gloscol 2023

C# Programming 42

Implicit Conversions

Implicit conversions occur without any extra intervention and require

Compatible Data Types

Source Data Type must be <= memory size of destination type

UInt16 x = 10; // UInt16 is an unsigned 16 bit integer (Min value is 0)
UInt32 z = x; // Implicit conversion from UInt16 to UIn32

Gloscol 2023

C# Programming 43

Big type, little type

What happens if you pour a bucket of water into a cup?

It overflows!

Assigning large type variable to a small type variable is the same problem

If a 16 bit int assigned to an 8 bit int

8 bit variable is to small to receive all the bits

Data bits will be lost!

Gloscol 2023

C# Programming 44

Required Explicit Conversions

Assigning a smaller type to a larger (compatible) one requires "casting"

To assign a bigger type to a smaller prefix variable with smaller type name inside
brackets eg. UInt16 smallNumber = (UInt16)bigNumber

UInt32 z = UIInt16.MaxValue; // Assign the max value of a UInt16 to a UInt32
UInt16 x = (UInt16)z; // Notice the cast using the type we are assigning to in brackets

But ... We get an overflow error if the value in the larger type is too big for the small type to

hold (Pouring a full bucket into a cup)

UInt32 z = UIInt32.MaxValue; // Assign the max value of a UInt16 to a UInt32
UInt16 x = (UInt16)z; // OVERFLOW!!!

Gloscol 2023

C# Programming 45

Converting to Strings

Use ToString() on any variable to convert to a string

Event custom data types can support ToString()

int age = 21;
string sAge = age.ToString();

Gloscol 2023

C# Programming 46

Using the Convert class

You can use the Convert class and its static methods to

Convert any data type to any other

There are many To..() functions that facilitate conversions ToByte, ToChar, ToDecimal

etc

> Convert.ToBoolean('H');
true

Gloscol 2023

C# Programming 47

In this chapter we learned ...

Understand main C# data types

Data Type Operations

Type Conversions

Gloscol 2023

C# Programming 48

