Gloscol 2023

OO Programming

C# Programming

C# Programming

Gloscol 2023

In this chapter we will learn ...

e What is Object Oriented Programming

The four Pillars of OO Programming which are

Encapsulation

Abstraction

Inheritance

Polymorphism

C# Programming

Gloscol 2023

Agenda

e Review Last Topic

e |ntroducing Object Oriented
Programming

e The Four Pillars of OO

o Understanding the four pillars -
101

C# Programming

Gloscol 2023

Review

What is ...

e an object?

e aclass>

What's the difference?

C# Programming

Gloscol 2023

Introducing Object Oriented Design and Programming

How do we manage the complexity of a complex system?

(an) Answer

We break it down into smaller pieces

e Each piece should be easier to understand
e Each of the pieces can then be linked together and made to work with each other?

e Each piece can be verified/tested

C# Programming

Gloscol 2023

Decomposing Complexity

To break a complex system into smaller pieces we could write

e Modules containing monolithic code - ???
e Modules containing functions - Functional approach

o Classes defining data and methods - OO Approach

C# Programming

OO Analysis and Design

Traditional Approach
e Produce UML Models of domain

o Class Diagrams
o State Transition Diagrams

o Object Sequence Diagrams

e Usually done before development commences

Agile Approach

e No upfront design (No actual value to shippable product)

e Design emerges over iteration (UML may be used to document design)

Gloscol 2023

" Person
i bmlind
Modeling a problem with o
class diagrams Gmveo
~
e |dentify the "nouns" in a problem statement
o Nouns are modeled as classes [Student [Teacher N
o Determine relationships between classes
o |dentify commonality Qm(')")* / Teac:f; J
o Can you make generalizations)
o ldentify specializations v
o Use inheritance E‘Z;f:pﬁon —
\ /

C# Programming

Gloscol 2023

Associations

Define object relationships

Three types

e Association - "Knows of"
e Aggregation - "Part of"

e Composition - "Part of"

C# Programming

/ Cotivse / Student \
Name FirstName
LastName
Code 0..10
Description 0..% DOB
- Gender
StudentNumber
\ / o Qegister() /
Association
Car Engine
Make Capacity
Model BHP
Color O RPM
k / Aggregation - /
House Room
Address . Name
City R %1 width
Code Length
Height
_ Y, Composition _ .

Gloscol 2023

Inheritance

Generalizations

e Define Commonality across types

Specializations

e Extend a base type
o Add new behavior

o Qverride existing behavior

C# Programming

/ Person \

FirstName
LastName
DOB
Gender

Join()

Qave()

_/

JaN

/ Student \

StudentNumber

@roll() /

/ Teacher \
StaffNumber
Qach() /

Gloscol 2023

Aggregation

Association

o Applies to types that are
o Related

o Utilize the services of

Aggregation

C# Programming

11

Interface

Defines capability without defining implementation
A document could be:

e SpellCheckable and

e Printable at the same time
That means the document has the capability and therefore the ability to be

e Printed and
e Spell Checked

Interfaces define the methods and properties that a document must implement for it to
have both capabilities

12

Gloscol 2023

Principles of OO e

The Four Pillars I I I

o Abstraction - Hide complexity of implementation
e Encapsulation - Hide and protect data
e |nheritance - Identify commonality/specialization and promote re-use

e Polymorphism - Write code that works with objects based on capability

C# Programming

13

Gloscol 2023

Creating a Good OO Design

Ideally a good OO design should produce an object model that is

e Loosely Coupled
e Easyto Test
e Flexible enough to change

o Able to fundamentally switch implementation

Design is said to be SOLID

C# Programming

14

Gloscol 2023

C# Programming

Encapsulation

15

Encapsulation

Purpose

e Hide atype's information from direct manipulation

e Allow only controlled access to a type's data

Benefit

e Data inside objects changes in controlled and predictable ways
e Data changes can be validated

e Data changes can be easily detected and intercepted

16

Gloscol 2023

Information Hiding

Consider the following

class Car A
public int speed;
private string make;

Car myCar = new Car();
myCar.speed = 50; // Accessible because it 1is public

myCar.make = "Ford"; // Not Accessible because it is private
. ?

C# Programming

17

Gloscol 2023

Controlling Access to Data

Using Car as an example

class Car {
public int speed;
private string make;

o We could make Car go faster than any car has ever gone!

Car myCar = new Car();
myCar.speed = 50000; // 50000 MPH is faster than the fastest car ever

C# Programming

18

PROBLEM

Allowing Direct Access to a types data creates problems

o We can't control how that data is manipulated
e We can't validate inputs
e We can't ensure calculations are performed correctly

e \We can't ensure processes are followed

It's a free for all!

19

Gloscol 2023

Encapsulation

Encapsulation is a form of information hiding

e Make data private inside a type

e Provide functions/properties to allow controlled access to the data

C# Programming

20

Gloscol 2023

Reading private data

Private data can be retrieved using a public getter function

class Car {
private int speed;
public int GetSpeed(){
return speed;
+

C# Programming

21

Gloscol 2023

Modifying private data

Public Setter functions can control the change of hidden data

class Car {
public const int MAX_SPEED = 120;
private int speed;

public int SetSpeed(int value){

if (value <= MAX_SPEED) {
speed = value;
s

C# Programming

22

Properties

C# allows for the use of properties

o Appear to be simple fields
o Implemented using Getter/Setter functions

e Use private backing fields to store data

Properties are an alternative to getter/setter functions

23

Gloscol 2023

Property - Example

Defining a Read Property

class Car {
public const int MAX_SPEED = 120;
private int speed;
public int Speed{
get {
return speed;
5

C# Programming

24

Gloscol 2023

Property - Example

Defining a Write Property

class Car {
public const int MAX_SPEED = 120;
private int speed;
public int Speed{
set {
if (value <= MAX_SPEED) {
speed = value;
I3

e Note the value parameter isn't formally defined

e value is an implicit parameter of a setter
C# Programming

25

Gloscol 2023

Property Expressions

Properties can be condensed

class Car A
public const int MAX_SPEED = 120;
private int speed;
public int Speed {
get => speed;
set => if (value < MAX_SPEED) speed

C# Programming

value;

26

Varying Accessibility

Read/Write accessors can have different accessibility settings

e getteris public

e setteris private

class Car A
public const int MAX_SPEED = 120;
private int speed;
public int Speed {
get => speed;
private set => if (value < MAX_SPEED) speed = value;

C# Programming

27

Gloscol 2023

C# Programming

Inheritance

28

Gloscol 2023

Question

What are the major benefits of
Inheritance?

C# Programming

Inheritance

How do you understand it?

e A child inherits some features of its parents
o A beneficiary inherits some assets from an estate

e Atype inherits some features of its parent type

In each case

o "Features" are being inherited from parent to child

30

Inheriting Features

The ability to inherit features is useful to programmers

o \We could define general features in a parent type (Generalization)
e |nherit the general features into one or more child types

o Add extra features specific to each child (Specialization)

Benefit

o We are writing less code

e We are reusing code

31

Gloscol 2023

Example - Shapes have an Origin, Size, Area

What do they have in common?

C# Programming

/ Square \

X

Y
Width
Height
Area()

/ Cir)::le \

\
Radius
Area()
Circumference()

\Circu mferenceb

. /

32

Gloscol 2023

Creating a Generalization - Shape

Abstraction/Generalization

Area/Circumference are needed for all Shapes

“Area() but implementation is specific to each
Circumference()

("~ square T\ (cirde) Specialization
Width Radius Allows new features to be added and
Area() Area() base features to be overridden to
Circumference() Circumference() vary/specialize behavior of derived

types

A)

& 4

C# Programming

Gloscol 2023

C# Inheritance

Syntax

C# supports single inheritance
class <Derived Type Name> : <Base Type Name> {

}

C# Programming

34

Gloscol 2023

Implementing Inheritance

Here Rectangle inherits from Shape with a final definition of
e X, Y
o Width, Height

class Shape { // Base Class
public int X {get;set;}
public int Y {get;set;}

class Rectangle: Shape { // Derived Class
public int Width {get;set;}
public int Height {get;set;}

s

C# Programming

35

Gloscol 2023

Inheritance and constructors

Here we have a Shape with a constructor

class Shape { // Base Class
public int X {get;init;}
public int Y {get;init;}
public Shape(int x, int y){
X = X;
Y =y;

e Following code initializes an instance

Shape myShape = new Shape(10, 5);

C# Programming

36

Gloscol 2023

Potential Problem

What happens when an inheriting type inherits from Shape?

e Constructors aren't inherited

class Square: Shape

{
}

Answer

C# Programming

37

Gloscol 2023

Single Inheritance

To create a derived type

e |ts base type has to be constructed first

[\
|

| Shape \
o o
\ \ /L ” '
\ \\ - Shap/)/,e(lnt X, inty)
\\ Square /
\\\\\% / LSqua re(int x, inty, int height)

o A base type constructor must be satisfied

C# Programming

38

Gloscol 2023

Calling the Base Constructor from the Derived class

Here we

e Add a constructor to Square
o Call the base constructor directly using :base (x, y) to initialize the base

e |nitialize Width for Square constructor

class Square: Shape

{
public Square(int x, int y, int width): base(x, y) {

Width = width;
}

C# Programming

39

Gloscol 2023

Providing a Blank Constructor

If the base class has a parameter-less constructor

o Parameter-less constructor will be used automatically

o Explicit Constructor chaining is unnecessary

class Shape {
public Shape() {} // Parameterless Constructor Added
public Shape(int x, int y){

X = X;
Y = vy;
5
I3
class Square: Shape { // Square can construct Shape using parameterless constructor
I3

C# Programming

40

Gloscol 2023

Extending Classes

Classes can be extended by adding new features to the derived class

class Shape { // Base Class
public int X {get;set;}
public int Y {get;set;}

Here Shape is extended by adding property Height

class Square: Shape { // Derived Class
public int X {get;set;}
public int Y {get;set;}
public int Height {get;set;}

s

C# Programming

41

Gloscol 2023

Allowing base class features to be overridden

Derived classes can override methods/properties declared in base as

e abstract - must override in derived class

e virtual - can override or be inherited by derived class

abstract class Shape { // Base Class
public int X {get;set;}
public int Y {get;set;}
public abstract int Area {get;}
public abstract int Circumference {get;}
public virtual Point Center => new Point(X, Y);

C# Programming

42

Note
Remember if a class contains any method or property declared as abstract the class itself must be declared as abstract as in
abstract class Shape {

}
We can't create object instances of abstract classes.

Gloscol 2023

Overriding base class features

We use override keyword to override properties/methods in base class

class Rectangle: Shape { // Derived Class
public int Width {get;set;}
public int Height {get;set;}
public override int Area => Width *x Height;
public override int Circumference => Width * 2 + Height *x 2;

e X and Y properties are inherited from Shape

e Virtual Center property is inherited but we could override this

e Shape is extended by adding Width and Height properties

o Concrete implementations for abstract Area and Circumference properties are added

C# Programming 43

So...

Inheritance allows us to

e |Inherit and re-use features in a base class
o Extend features in a base class by adding new features to the derived class

e Qverride abstract or virtual features of the base class
o Allows us to vary the behavior of the same method across multiple derived
classes

o Facilitates Polymorphism

44

Gloscol 2023

C# Programming

Polymorphism

45

Gloscol 2023

Polymorphism

Literally means Multiple Forms

C# Programming

46

Gloscol 2023

Let's image the following model

C# Programming

Car
Speed
MaxSpeed

Accelerate(amount)

<<interface>>
lAccelerable
Speed
MaxSpeed

Acceleratefamount)

/ RacingCar \

Spaoilers

N

|
/ RoadCar \

Registration

N 4

47

Gloscol 2023

Polymorphism Explained

class Car {
public int Speed {get;protected set;}
public virtual int MaxSpeed {get => 120}
public virtual void Accelerate(int amount
Thread.Sleep(80 * amount);
Speed += amount;

C# Programming

5) A

48

Gloscol 2023

Creating a Car object

Car myCar = new Car();

o Carreference points to Car object

myCar

< i

Accelerate(int amount)

C# Programming 49

Gloscol 2023

Extending Car

RacingCar is a kind of Car but it also has

e Spoilers property

class RacingCar: Car A
public int Spoilers {get;set;}
¥

C# Programming

50

Gloscol 2023

Creating a RacingCar object

RacingCar myCar = new RacingCar();

e RacingCar reference points to RacingCar object

myCar

Racing
Car

Accelerate(int amount)

C# Programming 51

Gloscol 2023

Reference Substitution

A base class reference variable can point to

o Any derived object in inheritance hierarchy

That means we can do this

Car myCar = new RacingCar();

C# Programming

52

Gloscol 2023

Reference Substitution - Under the hood

Car myCar = new RacingCar();

e Car reference points to RacingCar object

myCar

< i

Accelerate(int amount)

C# Programming 53

Why is substitution useful?

We can write sub systems targeting the base class

e e.0. A function expecting a base class parameter

Use method overriding in derived classes to vary behavior

e Derived classes override certain methods/properties

Substitute base class for derived instances

e Pass an instance of a derived class rather than the base class

e Result is polymorphism

54

Given

void AccelerateToMaxSpeed(Car item) {
while(item.Speed < item.MaxSpeed) {
item.Accelerate();
I3

Substitution allows us to pass to AccelerateToMaxSpeed a

e Carreferenceor..

o Reference of any type inheriting from Car

AccelerateToMaxSpeed(new Car());
AccelerateToMaxSpeed(new RacingCar());

55

Gloscol 2023

So what's the big deal?

At the moment Car and RacingCar will both Accelerate the same way

e Accelerate method is inherited from Car

But .. It's declared as virtual

¢ virtual means it can be overridden

C# Programming

56

Gloscol 2023

Let's override Accelerate(..)

class Car {

public virtual Accelerate(int amount = 5){
Thread.Sleep(80 * amount);
Speed += amount;

e Reducing the delay will make it appear to accelerate faster

class RacingCar: Car {

public override Accelerate(int amount = 5){
Thread.Sleep(40 * amount);
Speed += amount;

}

C# Programming

57

Gloscol 2023

Same Code - Different Object

Now let's Accelerate different Cars ...

AccelerateToMaxSpeed(new Car());
AccelerateToMaxSpeed(new RacingCar());

Result

RacingCar accelerates faster than Car

o Substitution allows us to pass any kind of Car to AccelerateToMaxSpeed

e override let's us modify the behavior of certain features

C# Programming

58

Polymorphism

The ability to define multiple object forms that

e Share a common set of behaviors

e Implement their behaviors in their own way

Polymorphism helps us to

e Increase the flexibility and reuse of the code we write

e Decouple the code we write from dependence of data type

59

Gloscol 2023

C# Programming

Abstraction

60

Gloscol 2023

Discuss

What is Abstraction?

C# Programming 61

Gloscol 2023

Imagine a Duck

Why is a Duck like abstraction?

C# Programming 62

Abstraction

Abstraction is about hiding complexity by ...

e Hiding the details of implementation

o Simplifying the external surface
o Providing only those methods and properties absolutely needed

Abstraction is about ease of change

e We should be able to change how the type is implemented

o We shouldn't need to change how we use it

63

Gloscol 2023

What does it meantobea...

Car

What are the bare essentials that define Car in our domain?

e Speed, RPM, FuellLevel, VID ...?
o Accelerate(), Brake(), Start(), Stop() ... ?

C# Programming

o4

The Job

Condense the definition down to bare essentials

Hide the complexity

e How do we generate power? ... Hide it

e How do we store fuel? ... Hide it

e How do we drive the wheels? ... Not your problem

We need to define a simple interface that

o Allows the user of the type to operate the Car regardless of its implementation

65

Gloscol 2023

Why might this implementation be a problem?

class Car {
public int Speed {get;private set;}
public Accelerate(int amount) {
int requiredSpeed = Speed + amount;
while(Speed < requiredSpeed) {
IncreaseFuelFlow(5);
Thread.Sleep(500);
I3
s
public void IncreaseFuelFlow(int volumeIncrease) {
// Increase Fuel Flow

// Leads to Speed increasing ... trust me :)

C# Programming

66

Abstracting Car

We can change the speed of the Car by calling public methods

o Accelerate() or

e IncreaseFuelFlow()

But ...

e IncreaseFuelFlow() assumes a fossil fuel based Car

e What happens if we want to change the implementation to be electric?

So create an abstract public interface

67/

Gloscol 2023

Hiding Implementation

If we hide implementation we can change it later

class Car {
public int Speed {get;private set;}
public Accelerate(int amount) {
int requiredSpeed = Speed + amount;
while(Speed < requiredSpeed) {
IncreaseFuelFlow(5);
Thread.Sleep(500);

+
I3
private void IncreaseFuelFlow(int volumeIncrease) {
s

C# Programming 68

Gloscol 2023

To change implementation for an Electric Car

e Maintain the public interface

e Change the private implementation

class Car {
public int Speed {get;private set;}
public Accelerate(int amount) {

while(Speed < requiredSpeed) {
IncreaseElectricCurrent(5)

4

}
}

private void IncreaseElectricCurrent(int current) {}

C# Programming

69

So...

The public face of our types should be simple (an abstraction) but ...

e Under the hood they are implementing complexity via
o Private function

o Interactions with other types

We should be able to change the implementation of our type without

e Changing the public interface
e Changing how it is used within our application

e Unit Test cases should still hold true

/70

Gloscol 2023

Abstract Data Types

Sometimes an abstractionis

e Too abstract to exist as an object in its own right
o Useful only as a template for defining other types

C# Allows for the creation of abstract type using abstract keyword

e Defines a type that can't be used to create objects. Does support inheritance

abstract class Car {
public int Speed {get;private set;}
}

Car myCar = new Car(); // COMPILE ERROR!!!

C# Programming

71

Gloscol 2023

Abstract Classes

Abstract classes allow abstract methods and properties

e Requires the inheriting class to implement

Code below requires any inheriting type to fully implement Accelerate(..)

e Note Accelerate has no code block defined { ..}

abstract class Car {
public int Speed{get;private set;}
public abstract void Accelerate(int amount);

C# Programming

/2

Gloscol 2023

In this chapter we learned ...

e What is Object Oriented Programming

The four Pillars of OO Programming which are

Encapsulation

Abstraction

Inheritance

Polymorphism

C# Programming

/3

